探讨词嵌入对不连贯半监督西班牙语动词义消歧的影响

Cristian Cardellino, L. A. Alemany
{"title":"探讨词嵌入对不连贯半监督西班牙语动词义消歧的影响","authors":"Cristian Cardellino, L. A. Alemany","doi":"10.4114/INTARTIF.VOL21ISS61PP67-81","DOIUrl":null,"url":null,"abstract":"This work explores the use of word embeddings as features for Spanish  verb sense disambiguation (VSD). This type of learning technique is named disjoint semisupervised learning: an unsupervised algorithm (i.e. the word embeddings) is trained on unlabeled data separately as a first step, and then its results are used by a supervised classifier. In this work we primarily focus on two aspects of VSD trained with unsupervised word representations. First, we show how the domain where the word embeddings are trained affects the performance of the supervised task. A specific domain can improve the results if this domain is shared with the domain of the supervised task, even if the word embeddings are trained with smaller corpora. Second, we show that the use of word embeddings can help the model generalize when compared to not using word embeddings. This means embeddings help by decreasing the model tendency to overfit.","PeriodicalId":176050,"journal":{"name":"Inteligencia Artif.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploring the impact of word embeddings for disjoint semisupervised Spanish verb sense disambiguation\",\"authors\":\"Cristian Cardellino, L. A. Alemany\",\"doi\":\"10.4114/INTARTIF.VOL21ISS61PP67-81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work explores the use of word embeddings as features for Spanish  verb sense disambiguation (VSD). This type of learning technique is named disjoint semisupervised learning: an unsupervised algorithm (i.e. the word embeddings) is trained on unlabeled data separately as a first step, and then its results are used by a supervised classifier. In this work we primarily focus on two aspects of VSD trained with unsupervised word representations. First, we show how the domain where the word embeddings are trained affects the performance of the supervised task. A specific domain can improve the results if this domain is shared with the domain of the supervised task, even if the word embeddings are trained with smaller corpora. Second, we show that the use of word embeddings can help the model generalize when compared to not using word embeddings. This means embeddings help by decreasing the model tendency to overfit.\",\"PeriodicalId\":176050,\"journal\":{\"name\":\"Inteligencia Artif.\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inteligencia Artif.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4114/INTARTIF.VOL21ISS61PP67-81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artif.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/INTARTIF.VOL21ISS61PP67-81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作探讨了使用词嵌入作为西班牙语动词意义消歧(VSD)的特征。这种类型的学习技术被称为非联合半监督学习:作为第一步,一个无监督算法(即词嵌入)在未标记的数据上单独训练,然后它的结果被监督分类器使用。在这项工作中,我们主要关注用无监督词表示训练的VSD的两个方面。首先,我们展示了训练词嵌入的域如何影响监督任务的性能。如果一个特定的领域与监督任务的领域共享,即使单词嵌入是用较小的语料库训练的,也可以改善结果。其次,我们表明,与不使用词嵌入相比,使用词嵌入可以帮助模型泛化。这意味着嵌入有助于减少模型的过拟合倾向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the impact of word embeddings for disjoint semisupervised Spanish verb sense disambiguation
This work explores the use of word embeddings as features for Spanish  verb sense disambiguation (VSD). This type of learning technique is named disjoint semisupervised learning: an unsupervised algorithm (i.e. the word embeddings) is trained on unlabeled data separately as a first step, and then its results are used by a supervised classifier. In this work we primarily focus on two aspects of VSD trained with unsupervised word representations. First, we show how the domain where the word embeddings are trained affects the performance of the supervised task. A specific domain can improve the results if this domain is shared with the domain of the supervised task, even if the word embeddings are trained with smaller corpora. Second, we show that the use of word embeddings can help the model generalize when compared to not using word embeddings. This means embeddings help by decreasing the model tendency to overfit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信