建模强度轮廓和音调和强度的相互作用,以提高自动韵律事件检测和分类

A. Rosenberg
{"title":"建模强度轮廓和音调和强度的相互作用,以提高自动韵律事件检测和分类","authors":"A. Rosenberg","doi":"10.1109/SLT.2012.6424253","DOIUrl":null,"url":null,"abstract":"Prosody, or the way words are spoken, carries important information to understanding a speaker's communicative intention. Many studies on automatic prosodic analysis focus on parameterizing pitch content. In this work, we extend previous pitch contour modeling features to intensity contours, and develop a set of features based on the interaction of pitch and intensity. These new features improve the state-of-the-art on all prosodic event detection and classification tasks related to automatic ToBI labeling.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Modeling intensity contours and the interaction of pitch and intensity to improve automatic prosodic event detection and classification\",\"authors\":\"A. Rosenberg\",\"doi\":\"10.1109/SLT.2012.6424253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prosody, or the way words are spoken, carries important information to understanding a speaker's communicative intention. Many studies on automatic prosodic analysis focus on parameterizing pitch content. In this work, we extend previous pitch contour modeling features to intensity contours, and develop a set of features based on the interaction of pitch and intensity. These new features improve the state-of-the-art on all prosodic event detection and classification tasks related to automatic ToBI labeling.\",\"PeriodicalId\":375378,\"journal\":{\"name\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2012.6424253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

韵律,或者说说话的方式,承载着理解说话人的交际意图的重要信息。许多韵律自动分析的研究都集中在参数化音高内容上。在这项工作中,我们将先前的基音轮廓建模特征扩展到强度轮廓,并开发了一套基于基音和强度相互作用的特征。这些新功能提高了与自动ToBI标记相关的所有韵律事件检测和分类任务的最先进水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling intensity contours and the interaction of pitch and intensity to improve automatic prosodic event detection and classification
Prosody, or the way words are spoken, carries important information to understanding a speaker's communicative intention. Many studies on automatic prosodic analysis focus on parameterizing pitch content. In this work, we extend previous pitch contour modeling features to intensity contours, and develop a set of features based on the interaction of pitch and intensity. These new features improve the state-of-the-art on all prosodic event detection and classification tasks related to automatic ToBI labeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信