基于矢量量化和二维隐马尔可夫模型的联合图像压缩与分类

Jia Li, R. Gray, R. Olshen
{"title":"基于矢量量化和二维隐马尔可夫模型的联合图像压缩与分类","authors":"Jia Li, R. Gray, R. Olshen","doi":"10.1109/DCC.1999.755650","DOIUrl":null,"url":null,"abstract":"We present an algorithm to achieve good compression and classification for images using vector quantization and a two dimensional hidden Markov model. The feature vectors of image blocks are assumed to be generated by a two dimensional hidden Markov model. We first estimate the parameters of the model, then design a vector quantizer to minimize a weighted sum of compression distortion and classification risk, the latter being defined as the negative of the maximum log likelihood of states and feature vectors. The algorithm is tested on both synthetic data and real image data. The extension to joint progressive compression and classification is discussed.","PeriodicalId":103598,"journal":{"name":"Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Joint image compression and classification with vector quantization and a two dimensional hidden Markov model\",\"authors\":\"Jia Li, R. Gray, R. Olshen\",\"doi\":\"10.1109/DCC.1999.755650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm to achieve good compression and classification for images using vector quantization and a two dimensional hidden Markov model. The feature vectors of image blocks are assumed to be generated by a two dimensional hidden Markov model. We first estimate the parameters of the model, then design a vector quantizer to minimize a weighted sum of compression distortion and classification risk, the latter being defined as the negative of the maximum log likelihood of states and feature vectors. The algorithm is tested on both synthetic data and real image data. The extension to joint progressive compression and classification is discussed.\",\"PeriodicalId\":103598,\"journal\":{\"name\":\"Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1999.755650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1999.755650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们提出了一种利用矢量量化和二维隐马尔可夫模型来实现图像压缩和分类的算法。假设图像块的特征向量是由二维隐马尔可夫模型生成的。我们首先估计模型的参数,然后设计一个矢量量化器来最小化压缩失真和分类风险的加权和,后者被定义为状态和特征向量的最大对数似然的负数。该算法在合成数据和真实图像数据上进行了测试。讨论了关节渐进压缩的扩展和分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint image compression and classification with vector quantization and a two dimensional hidden Markov model
We present an algorithm to achieve good compression and classification for images using vector quantization and a two dimensional hidden Markov model. The feature vectors of image blocks are assumed to be generated by a two dimensional hidden Markov model. We first estimate the parameters of the model, then design a vector quantizer to minimize a weighted sum of compression distortion and classification risk, the latter being defined as the negative of the maximum log likelihood of states and feature vectors. The algorithm is tested on both synthetic data and real image data. The extension to joint progressive compression and classification is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信