基于机载声信号包络分析的离心泵轴承故障检测与诊断

Alsadak Daraz, Samir Alabied, Ann Smith, F. Gu, A. Ball
{"title":"基于机载声信号包络分析的离心泵轴承故障检测与诊断","authors":"Alsadak Daraz, Samir Alabied, Ann Smith, F. Gu, A. Ball","doi":"10.23919/IConAC.2018.8749053","DOIUrl":null,"url":null,"abstract":"As key components in centrifugal pumps rolling bearings work to reduce friction and maintain the impeller rotor in correct alignment with stationary parts under the action of radial and transverse loads. Effective fault detection of bearings allows appropriate preventive action to be taken timely, where required, and enhances performance operation. To develop an easy implementation and yet effective method for detecting and diagnosing pump bearing faults, the focus of this study is on utilising airborne sound signals which can be acquired more remotely and at lower cost, compared with vibration based methods which needs high numbers of sensors for monitoring a pump system. However, acoustic signals are much noisy, and it is difficult to detect machine faults using conventional signal processing methods such as time domain features, where the results have a limited and weak fault signatures. Thus, a more advanced signal processing technique: the envelope spectrum is adopted to establish accurate diagnostic fault patterns. The evaluating results show that the proposed method is effective and accurate to enhance the amplitudes at bearing characteristic frequencies, allowing diagnostic information to be extracted reliably, which also makes the Root Mean Square (RMS) of the envelope signals give a full separation between faulty and healthy cases over a wide range of pump operation, outperforming the vibration signals.","PeriodicalId":121030,"journal":{"name":"2018 24th International Conference on Automation and Computing (ICAC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Detection and Diagnosis of Centrifugal Pump Bearing Faults Based on the Envelope Analysis of Airborne Sound Signals\",\"authors\":\"Alsadak Daraz, Samir Alabied, Ann Smith, F. Gu, A. Ball\",\"doi\":\"10.23919/IConAC.2018.8749053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As key components in centrifugal pumps rolling bearings work to reduce friction and maintain the impeller rotor in correct alignment with stationary parts under the action of radial and transverse loads. Effective fault detection of bearings allows appropriate preventive action to be taken timely, where required, and enhances performance operation. To develop an easy implementation and yet effective method for detecting and diagnosing pump bearing faults, the focus of this study is on utilising airborne sound signals which can be acquired more remotely and at lower cost, compared with vibration based methods which needs high numbers of sensors for monitoring a pump system. However, acoustic signals are much noisy, and it is difficult to detect machine faults using conventional signal processing methods such as time domain features, where the results have a limited and weak fault signatures. Thus, a more advanced signal processing technique: the envelope spectrum is adopted to establish accurate diagnostic fault patterns. The evaluating results show that the proposed method is effective and accurate to enhance the amplitudes at bearing characteristic frequencies, allowing diagnostic information to be extracted reliably, which also makes the Root Mean Square (RMS) of the envelope signals give a full separation between faulty and healthy cases over a wide range of pump operation, outperforming the vibration signals.\",\"PeriodicalId\":121030,\"journal\":{\"name\":\"2018 24th International Conference on Automation and Computing (ICAC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 24th International Conference on Automation and Computing (ICAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IConAC.2018.8749053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 24th International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IConAC.2018.8749053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

滚动轴承作为离心泵的关键部件,在径向和横向载荷的作用下,起到减小摩擦和保持叶轮转子与静止部件正确对中的作用。轴承的有效故障检测允许在需要时及时采取适当的预防措施,并提高性能运行。为了开发一种易于实现且有效的方法来检测和诊断泵轴承故障,本研究的重点是利用机载声音信号,与需要大量传感器来监测泵系统的基于振动的方法相比,机载声音信号可以更远程、更低成本地获取。然而,声信号具有很大的噪声,使用传统的信号处理方法(如时域特征)难以检测机器故障,其结果具有有限且较弱的故障特征。因此,采用一种更先进的信号处理技术:包络谱来建立准确的诊断故障模式。评估结果表明,该方法有效、准确地增强了轴承特征频率处的幅值,可靠地提取了诊断信息,并使包络信号的均方根(RMS)在泵的大范围运行中完全区分了故障和健康情况,优于振动信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection and Diagnosis of Centrifugal Pump Bearing Faults Based on the Envelope Analysis of Airborne Sound Signals
As key components in centrifugal pumps rolling bearings work to reduce friction and maintain the impeller rotor in correct alignment with stationary parts under the action of radial and transverse loads. Effective fault detection of bearings allows appropriate preventive action to be taken timely, where required, and enhances performance operation. To develop an easy implementation and yet effective method for detecting and diagnosing pump bearing faults, the focus of this study is on utilising airborne sound signals which can be acquired more remotely and at lower cost, compared with vibration based methods which needs high numbers of sensors for monitoring a pump system. However, acoustic signals are much noisy, and it is difficult to detect machine faults using conventional signal processing methods such as time domain features, where the results have a limited and weak fault signatures. Thus, a more advanced signal processing technique: the envelope spectrum is adopted to establish accurate diagnostic fault patterns. The evaluating results show that the proposed method is effective and accurate to enhance the amplitudes at bearing characteristic frequencies, allowing diagnostic information to be extracted reliably, which also makes the Root Mean Square (RMS) of the envelope signals give a full separation between faulty and healthy cases over a wide range of pump operation, outperforming the vibration signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信