Esteban Jove, J. Casteleiro-Roca, Héctor Quintián-Pardo, Francisco Zayas-Gato, G. Vercelli, J. Calvo-Rolle
{"title":"基于混合拓扑的单类分类器在电池故障检测中的应用","authors":"Esteban Jove, J. Casteleiro-Roca, Héctor Quintián-Pardo, Francisco Zayas-Gato, G. Vercelli, J. Calvo-Rolle","doi":"10.1093/JIGPAL/JZAB011","DOIUrl":null,"url":null,"abstract":"\n The use of batteries became essential in our daily life in electronic devices, electric vehicles and energy storage systems in general terms. As they play a key role in many devices, their design and implementation must follow a thorough test process to check their features at different operating points. In this circumstance, the appearance of any kind of deviation from the expected operation must be detected. This research deals with real data registered during the testing phase of a lithium iron phosphate—LiFePO4—battery. The process is divided into four different working points, alternating charging, discharging and resting periods. This work proposes a hybrid classifier, based on one-class techniques, whose aim is to detect anomalous situations during the battery test. The faults are created by modifying the measured cell temperature a slight ratio from their real value. A detailed analysis of each technique performance is presented. The average performance of the chosen classifier presents successful results.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A One-class Classifier Based on a Hybrid Topology to Detect Faults in Power Cells\",\"authors\":\"Esteban Jove, J. Casteleiro-Roca, Héctor Quintián-Pardo, Francisco Zayas-Gato, G. Vercelli, J. Calvo-Rolle\",\"doi\":\"10.1093/JIGPAL/JZAB011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The use of batteries became essential in our daily life in electronic devices, electric vehicles and energy storage systems in general terms. As they play a key role in many devices, their design and implementation must follow a thorough test process to check their features at different operating points. In this circumstance, the appearance of any kind of deviation from the expected operation must be detected. This research deals with real data registered during the testing phase of a lithium iron phosphate—LiFePO4—battery. The process is divided into four different working points, alternating charging, discharging and resting periods. This work proposes a hybrid classifier, based on one-class techniques, whose aim is to detect anomalous situations during the battery test. The faults are created by modifying the measured cell temperature a slight ratio from their real value. A detailed analysis of each technique performance is presented. The average performance of the chosen classifier presents successful results.\",\"PeriodicalId\":304915,\"journal\":{\"name\":\"Log. J. IGPL\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. J. IGPL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/JIGPAL/JZAB011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/JIGPAL/JZAB011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A One-class Classifier Based on a Hybrid Topology to Detect Faults in Power Cells
The use of batteries became essential in our daily life in electronic devices, electric vehicles and energy storage systems in general terms. As they play a key role in many devices, their design and implementation must follow a thorough test process to check their features at different operating points. In this circumstance, the appearance of any kind of deviation from the expected operation must be detected. This research deals with real data registered during the testing phase of a lithium iron phosphate—LiFePO4—battery. The process is divided into four different working points, alternating charging, discharging and resting periods. This work proposes a hybrid classifier, based on one-class techniques, whose aim is to detect anomalous situations during the battery test. The faults are created by modifying the measured cell temperature a slight ratio from their real value. A detailed analysis of each technique performance is presented. The average performance of the chosen classifier presents successful results.