多存储库中的数据转换和迁移

Adam Dziedzic, Aaron J. Elmore, M. Stonebraker
{"title":"多存储库中的数据转换和迁移","authors":"Adam Dziedzic, Aaron J. Elmore, M. Stonebraker","doi":"10.1109/HPEC.2016.7761594","DOIUrl":null,"url":null,"abstract":"Ever increasing data size and new requirements in data processing has fostered the development of many new database systems. The result is that many data-intensive applications are underpinned by different engines. To enable data mobility there is a need to transfer data between systems easily and efficiently. We analyze the state-of-the-art of data migration and outline research opportunities for a rapid data transfer. Our experiments explore data migration between a diverse set of databases, including PostgreSQL, SciDB, S-Store and Accumulo. Each of the systems excels at specific application requirements, such as transactional processing, numerical computation, streaming data, and large scale text processing. Providing an efficient data migration tool is essential to take advantage of superior processing from that specialized databases. Our goal is to build such a data migration framework that will take advantage of recent advancement in hardware and software.","PeriodicalId":308129,"journal":{"name":"2016 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Data transformation and migration in polystores\",\"authors\":\"Adam Dziedzic, Aaron J. Elmore, M. Stonebraker\",\"doi\":\"10.1109/HPEC.2016.7761594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ever increasing data size and new requirements in data processing has fostered the development of many new database systems. The result is that many data-intensive applications are underpinned by different engines. To enable data mobility there is a need to transfer data between systems easily and efficiently. We analyze the state-of-the-art of data migration and outline research opportunities for a rapid data transfer. Our experiments explore data migration between a diverse set of databases, including PostgreSQL, SciDB, S-Store and Accumulo. Each of the systems excels at specific application requirements, such as transactional processing, numerical computation, streaming data, and large scale text processing. Providing an efficient data migration tool is essential to take advantage of superior processing from that specialized databases. Our goal is to build such a data migration framework that will take advantage of recent advancement in hardware and software.\",\"PeriodicalId\":308129,\"journal\":{\"name\":\"2016 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2016.7761594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2016.7761594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

不断增长的数据大小和数据处理的新需求促进了许多新的数据库系统的发展。其结果是,许多数据密集型应用程序由不同的引擎支持。为了实现数据移动性,需要在系统之间轻松有效地传输数据。我们分析了数据迁移的最新技术,并概述了快速数据传输的研究机会。我们的实验探索了不同数据库之间的数据迁移,包括PostgreSQL、SciDB、S-Store和Accumulo。每个系统都擅长于特定的应用需求,例如事务处理、数值计算、流数据和大规模文本处理。提供有效的数据迁移工具对于利用专用数据库的高级处理非常重要。我们的目标是构建这样一个数据迁移框架,它将利用硬件和软件的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data transformation and migration in polystores
Ever increasing data size and new requirements in data processing has fostered the development of many new database systems. The result is that many data-intensive applications are underpinned by different engines. To enable data mobility there is a need to transfer data between systems easily and efficiently. We analyze the state-of-the-art of data migration and outline research opportunities for a rapid data transfer. Our experiments explore data migration between a diverse set of databases, including PostgreSQL, SciDB, S-Store and Accumulo. Each of the systems excels at specific application requirements, such as transactional processing, numerical computation, streaming data, and large scale text processing. Providing an efficient data migration tool is essential to take advantage of superior processing from that specialized databases. Our goal is to build such a data migration framework that will take advantage of recent advancement in hardware and software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信