基于赛灵思fpga的深度学习挑战与解决方案

Elliott Delaye, Ashish Sirasao, Chaithanya Dudha, Sabya Das
{"title":"基于赛灵思fpga的深度学习挑战与解决方案","authors":"Elliott Delaye, Ashish Sirasao, Chaithanya Dudha, Sabya Das","doi":"10.1109/ICCAD.2017.8203877","DOIUrl":null,"url":null,"abstract":"In this paper, we will describe the architectural, software, performance, and implementation challenges and solutions and current research on the use of programmable logic to enable deep learning applications. First a discussion of characteristics of building a deep learning system will described. Next architectural choices will be explained for how a FPGA fabric can efficiently solve deep learning tasks. Finally specific techniques for how DSPs, memories and are used in high performance applications will be described.","PeriodicalId":126686,"journal":{"name":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Deep learning challenges and solutions with Xilinx FPGAs\",\"authors\":\"Elliott Delaye, Ashish Sirasao, Chaithanya Dudha, Sabya Das\",\"doi\":\"10.1109/ICCAD.2017.8203877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we will describe the architectural, software, performance, and implementation challenges and solutions and current research on the use of programmable logic to enable deep learning applications. First a discussion of characteristics of building a deep learning system will described. Next architectural choices will be explained for how a FPGA fabric can efficiently solve deep learning tasks. Finally specific techniques for how DSPs, memories and are used in high performance applications will be described.\",\"PeriodicalId\":126686,\"journal\":{\"name\":\"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2017.8203877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们将描述架构、软件、性能和实现方面的挑战和解决方案,以及使用可编程逻辑实现深度学习应用的当前研究。首先,我们将讨论构建深度学习系统的特点。接下来的架构选择将解释FPGA结构如何有效地解决深度学习任务。最后,将描述如何在高性能应用中使用dsp、存储器和器件的具体技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning challenges and solutions with Xilinx FPGAs
In this paper, we will describe the architectural, software, performance, and implementation challenges and solutions and current research on the use of programmable logic to enable deep learning applications. First a discussion of characteristics of building a deep learning system will described. Next architectural choices will be explained for how a FPGA fabric can efficiently solve deep learning tasks. Finally specific techniques for how DSPs, memories and are used in high performance applications will be described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信