基于PCA的序列特征空间学习基因选择

Jinglin Yang, Han-Xiong Li
{"title":"基于PCA的序列特征空间学习基因选择","authors":"Jinglin Yang, Han-Xiong Li","doi":"10.1109/ICMLC.2010.5580720","DOIUrl":null,"url":null,"abstract":"The expression of genes could be used for tumor subtype classification, clinical diagnosis and prognosis outcome prediction, but the underlying mechanism remains unknown. It is possible for data-based machine learning method to be employed for phenotype classification problem. But high dimensionality and small sample size make many machine learning methods fail. In this research, a PCA based sequential feature space learning method is proposed for gene selection. A two level feature selection process is conducted. In the first level PCA decomposition is conducted to obtain the orthogonal axis, and then features are projected and evaluated on the orthogonal axis. In second level, the features that have large projections are selected to form the feature space. Then the projections of all features onto the feature space are evaluated. Only features that have large projections both on orthogonal axis and feature subspace are selected as the feature subset. Then a neural network (NN) is employed to learn the classification model. The PCA based feature space learning is processed in a sequential manner until the classification performance is under pre-specified threshold and stable. The proposed methods have been applied to two gene microarray databases and showing good results.","PeriodicalId":126080,"journal":{"name":"2010 International Conference on Machine Learning and Cybernetics","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"PCA based sequential feature space learning for gene selection\",\"authors\":\"Jinglin Yang, Han-Xiong Li\",\"doi\":\"10.1109/ICMLC.2010.5580720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The expression of genes could be used for tumor subtype classification, clinical diagnosis and prognosis outcome prediction, but the underlying mechanism remains unknown. It is possible for data-based machine learning method to be employed for phenotype classification problem. But high dimensionality and small sample size make many machine learning methods fail. In this research, a PCA based sequential feature space learning method is proposed for gene selection. A two level feature selection process is conducted. In the first level PCA decomposition is conducted to obtain the orthogonal axis, and then features are projected and evaluated on the orthogonal axis. In second level, the features that have large projections are selected to form the feature space. Then the projections of all features onto the feature space are evaluated. Only features that have large projections both on orthogonal axis and feature subspace are selected as the feature subset. Then a neural network (NN) is employed to learn the classification model. The PCA based feature space learning is processed in a sequential manner until the classification performance is under pre-specified threshold and stable. The proposed methods have been applied to two gene microarray databases and showing good results.\",\"PeriodicalId\":126080,\"journal\":{\"name\":\"2010 International Conference on Machine Learning and Cybernetics\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.5580720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.5580720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基因的表达可用于肿瘤亚型分类、临床诊断和预后预后预测,但其潜在机制尚不清楚。将基于数据的机器学习方法应用于表型分类问题是可能的。但是高维度和小样本量使得许多机器学习方法失败。本研究提出了一种基于主成分分析的序列特征空间学习方法用于基因选择。进行了两级特征选择过程。首先进行主成分分解得到正交轴,然后在正交轴上对特征进行投影和评价;第二层,选取投影量大的特征组成特征空间。然后评估所有特征在特征空间上的投影。只选择在正交轴和特征子空间上都有较大投影的特征作为特征子集。然后利用神经网络(NN)学习分类模型。基于PCA的特征空间学习按顺序进行处理,直到分类性能低于预先设定的阈值并稳定。该方法已应用于两个基因微阵列数据库,并取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PCA based sequential feature space learning for gene selection
The expression of genes could be used for tumor subtype classification, clinical diagnosis and prognosis outcome prediction, but the underlying mechanism remains unknown. It is possible for data-based machine learning method to be employed for phenotype classification problem. But high dimensionality and small sample size make many machine learning methods fail. In this research, a PCA based sequential feature space learning method is proposed for gene selection. A two level feature selection process is conducted. In the first level PCA decomposition is conducted to obtain the orthogonal axis, and then features are projected and evaluated on the orthogonal axis. In second level, the features that have large projections are selected to form the feature space. Then the projections of all features onto the feature space are evaluated. Only features that have large projections both on orthogonal axis and feature subspace are selected as the feature subset. Then a neural network (NN) is employed to learn the classification model. The PCA based feature space learning is processed in a sequential manner until the classification performance is under pre-specified threshold and stable. The proposed methods have been applied to two gene microarray databases and showing good results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信