从流图中学习决策规则

Chien-Chung Chan, S. Tsumoto
{"title":"从流图中学习决策规则","authors":"Chien-Chung Chan, S. Tsumoto","doi":"10.1109/NAFIPS.2007.383918","DOIUrl":null,"url":null,"abstract":"The use of flow graphs to represent information flow distribution from data tables for intelligent data analysis was first proposed by Pawlak. This paper studies the representation of flow graphs by multiset decision tables. This representation is minimal. Inspired by the flow graphs, a new rule learning algorithm based on this representation is presented with examples. Two sets of rules are learned from certain examples and examples in the boundary set. Rules are characterized by Bayesian factors introduced by Pawlak.","PeriodicalId":292853,"journal":{"name":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On Learning Decision Rules From Flow Graphs\",\"authors\":\"Chien-Chung Chan, S. Tsumoto\",\"doi\":\"10.1109/NAFIPS.2007.383918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of flow graphs to represent information flow distribution from data tables for intelligent data analysis was first proposed by Pawlak. This paper studies the representation of flow graphs by multiset decision tables. This representation is minimal. Inspired by the flow graphs, a new rule learning algorithm based on this representation is presented with examples. Two sets of rules are learned from certain examples and examples in the boundary set. Rules are characterized by Bayesian factors introduced by Pawlak.\",\"PeriodicalId\":292853,\"journal\":{\"name\":\"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2007.383918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2007.383918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

利用流图来表示数据表中的信息流分布,用于智能数据分析是由Pawlak首先提出的。本文研究了用多集决策表表示流图的方法。这种表示是最小的。在流图的启发下,给出了一种新的基于此表示的规则学习算法。从特定的例子和边界集中的例子中学习两套规则。规则由Pawlak引入的贝叶斯因子表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Learning Decision Rules From Flow Graphs
The use of flow graphs to represent information flow distribution from data tables for intelligent data analysis was first proposed by Pawlak. This paper studies the representation of flow graphs by multiset decision tables. This representation is minimal. Inspired by the flow graphs, a new rule learning algorithm based on this representation is presented with examples. Two sets of rules are learned from certain examples and examples in the boundary set. Rules are characterized by Bayesian factors introduced by Pawlak.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信