使用早期检测和数据分析的智能Web主题搜索

Ching-Cheng Lee, Yixin Yang
{"title":"使用早期检测和数据分析的智能Web主题搜索","authors":"Ching-Cheng Lee, Yixin Yang","doi":"10.1109/CMPSAC.2003.1245399","DOIUrl":null,"url":null,"abstract":"Topic-specific search engines that offer users relevant topics as search results have recently been developed. However, these topic-specific search engines require intensive human efforts to build and maintain. In addition, they visit many irrelevant pages. In our project, we propose a new approach for Web topics search. First, we do early detection for \"candidate topics\" while extracting words from the HTML text. Secondly, we perform data analysis on the appearance information such as appearance times and places for candidate topics. By these two techniques, we can reduce candidate topics' crawling times and computing cost. Analysis of the results and the comparisons with related research will be made to demonstrate the effectiveness of our approach.","PeriodicalId":173397,"journal":{"name":"Proceedings 27th Annual International Computer Software and Applications Conference. COMPAC 2003","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intelligent Web topics search using early detection and data analysis\",\"authors\":\"Ching-Cheng Lee, Yixin Yang\",\"doi\":\"10.1109/CMPSAC.2003.1245399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topic-specific search engines that offer users relevant topics as search results have recently been developed. However, these topic-specific search engines require intensive human efforts to build and maintain. In addition, they visit many irrelevant pages. In our project, we propose a new approach for Web topics search. First, we do early detection for \\\"candidate topics\\\" while extracting words from the HTML text. Secondly, we perform data analysis on the appearance information such as appearance times and places for candidate topics. By these two techniques, we can reduce candidate topics' crawling times and computing cost. Analysis of the results and the comparisons with related research will be made to demonstrate the effectiveness of our approach.\",\"PeriodicalId\":173397,\"journal\":{\"name\":\"Proceedings 27th Annual International Computer Software and Applications Conference. COMPAC 2003\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 27th Annual International Computer Software and Applications Conference. COMPAC 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMPSAC.2003.1245399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 27th Annual International Computer Software and Applications Conference. COMPAC 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMPSAC.2003.1245399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近开发了特定于主题的搜索引擎,为用户提供相关主题作为搜索结果。然而,这些特定于主题的搜索引擎需要大量的人力来构建和维护。此外,他们访问了许多不相关的页面。在我们的项目中,我们提出了一种新的Web主题搜索方法。首先,我们在从HTML文本中提取单词时对“候选主题”进行早期检测。其次,对候选话题的出现时间、地点等出现信息进行数据分析。通过这两种技术,我们可以减少候选主题的爬行时间和计算成本。本文将对结果进行分析,并与相关研究进行比较,以证明本文方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Web topics search using early detection and data analysis
Topic-specific search engines that offer users relevant topics as search results have recently been developed. However, these topic-specific search engines require intensive human efforts to build and maintain. In addition, they visit many irrelevant pages. In our project, we propose a new approach for Web topics search. First, we do early detection for "candidate topics" while extracting words from the HTML text. Secondly, we perform data analysis on the appearance information such as appearance times and places for candidate topics. By these two techniques, we can reduce candidate topics' crawling times and computing cost. Analysis of the results and the comparisons with related research will be made to demonstrate the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信