现场演示:LungSys -自动数字听诊器系统,用于检测不确定的呼吸声音

Yi Ma, Xinzi Xu, Qing Yu, Yuhang Zhang, Yongfu Li, Jian Zhao, Guoxing Wang
{"title":"现场演示:LungSys -自动数字听诊器系统,用于检测不确定的呼吸声音","authors":"Yi Ma, Xinzi Xu, Qing Yu, Yuhang Zhang, Yongfu Li, Jian Zhao, Guoxing Wang","doi":"10.1109/BIOCAS.2019.8918752","DOIUrl":null,"url":null,"abstract":"We demonstrate a new digital stethoscope system, LungSys, for our users to detect adventitious respiratory sounds automatically. LungSys includes a commercial digital stethoscope and a software application installed on an Android mobile tablet. The digital stethoscope converts an acoustic sound from the users’ chest to electronic signals and transmits the signals to a mobile tablet through a built-in Bluetooth device. Our custom software application in the tablet provides a real-time analysis of the lung sound using our proposed neural network model bi-ResNet(BRN) and identifies any adventitious respiratory sound to users. Since LungSys is based on a non-invasive digital stethoscope and our proprietary deep learning algorithm, it allows users who do not have any professional skill to perform respiratory diagnosis conveniently.","PeriodicalId":222264,"journal":{"name":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Live Demo: LungSys - Automatic Digital Stethoscope System For Adventitious Respiratory Sound Detection\",\"authors\":\"Yi Ma, Xinzi Xu, Qing Yu, Yuhang Zhang, Yongfu Li, Jian Zhao, Guoxing Wang\",\"doi\":\"10.1109/BIOCAS.2019.8918752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate a new digital stethoscope system, LungSys, for our users to detect adventitious respiratory sounds automatically. LungSys includes a commercial digital stethoscope and a software application installed on an Android mobile tablet. The digital stethoscope converts an acoustic sound from the users’ chest to electronic signals and transmits the signals to a mobile tablet through a built-in Bluetooth device. Our custom software application in the tablet provides a real-time analysis of the lung sound using our proposed neural network model bi-ResNet(BRN) and identifies any adventitious respiratory sound to users. Since LungSys is based on a non-invasive digital stethoscope and our proprietary deep learning algorithm, it allows users who do not have any professional skill to perform respiratory diagnosis conveniently.\",\"PeriodicalId\":222264,\"journal\":{\"name\":\"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2019.8918752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2019.8918752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们展示了一个新的数字听诊器系统,LungSys,为我们的用户自动检测外来呼吸音。lunsys包括一个商用数字听诊器和一个安装在安卓移动平板电脑上的软件应用程序。数字听诊器将使用者胸部的声音转换为电子信号,并通过内置的蓝牙设备将信号传输到移动平板电脑上。我们在平板电脑上的定制软件应用程序使用我们提出的神经网络模型bi-ResNet(BRN)提供肺部声音的实时分析,并识别用户的任何非外来呼吸声音。由于LungSys是基于非侵入式数字听诊器和我们专有的深度学习算法,它允许没有任何专业技能的用户方便地进行呼吸诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Live Demo: LungSys - Automatic Digital Stethoscope System For Adventitious Respiratory Sound Detection
We demonstrate a new digital stethoscope system, LungSys, for our users to detect adventitious respiratory sounds automatically. LungSys includes a commercial digital stethoscope and a software application installed on an Android mobile tablet. The digital stethoscope converts an acoustic sound from the users’ chest to electronic signals and transmits the signals to a mobile tablet through a built-in Bluetooth device. Our custom software application in the tablet provides a real-time analysis of the lung sound using our proposed neural network model bi-ResNet(BRN) and identifies any adventitious respiratory sound to users. Since LungSys is based on a non-invasive digital stethoscope and our proprietary deep learning algorithm, it allows users who do not have any professional skill to perform respiratory diagnosis conveniently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信