{"title":"一种可进化的硬件FPGA,用于自适应硬件","authors":"P. Haddow, G. Tufte","doi":"10.1109/CEC.2000.870345","DOIUrl":null,"url":null,"abstract":"Can we realise the opportunities that lie in design by evolution by using traditional technologies or are there better technologies which will allow us to fully realise the potential inherent in evolvable hardware? The authors consider the characteristics of evolvable hardware, especially for adaptive design, and discuss the demands that these characteristics place on the underlying technology. They suggest a potential alternative to today's FPGA technology. The proposed architecture is particularly focused at reducing the genotype required for a given design by reducing the configuration data required for unused routing resources and allowing partial configuration down to a single CLB. In addition, to support adaptive hardware, self-reconfiguration is enabled.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"An evolvable hardware FPGA for adaptive hardware\",\"authors\":\"P. Haddow, G. Tufte\",\"doi\":\"10.1109/CEC.2000.870345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Can we realise the opportunities that lie in design by evolution by using traditional technologies or are there better technologies which will allow us to fully realise the potential inherent in evolvable hardware? The authors consider the characteristics of evolvable hardware, especially for adaptive design, and discuss the demands that these characteristics place on the underlying technology. They suggest a potential alternative to today's FPGA technology. The proposed architecture is particularly focused at reducing the genotype required for a given design by reducing the configuration data required for unused routing resources and allowing partial configuration down to a single CLB. In addition, to support adaptive hardware, self-reconfiguration is enabled.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Can we realise the opportunities that lie in design by evolution by using traditional technologies or are there better technologies which will allow us to fully realise the potential inherent in evolvable hardware? The authors consider the characteristics of evolvable hardware, especially for adaptive design, and discuss the demands that these characteristics place on the underlying technology. They suggest a potential alternative to today's FPGA technology. The proposed architecture is particularly focused at reducing the genotype required for a given design by reducing the configuration data required for unused routing resources and allowing partial configuration down to a single CLB. In addition, to support adaptive hardware, self-reconfiguration is enabled.