在apache spark上实现分布式容量数据分析工具包

Chao Chen, Yuzhong Yan, Lei Huang, Lijun Qian
{"title":"在apache spark上实现分布式容量数据分析工具包","authors":"Chao Chen, Yuzhong Yan, Lei Huang, Lijun Qian","doi":"10.1109/NYSDS.2017.8085038","DOIUrl":null,"url":null,"abstract":"The multidimensional array is a fundamental data structure that has been widely used in scientific computing, as well as in many big data analytics applications. Distributed multi-dimensional array has been well studied in the High Performance Computing (HPC) platforms; however, little research has been done in the widely-used big data analytics platforms. In this paper, we present an implementation of Distributed Multi-dimensional Array Toolkit (DMAT) on top of the Apache Spark big data analytics platform. The toolkit supports several fashions for multidimensional array distributions, repartition, transposition, access, and data parallelism with a variety of parallel execution templates. This paper introduces the software architecture and implementations of DMAT, and also studies the performance characteristics of some typical multi-dimensional array operations with different configurations.","PeriodicalId":380859,"journal":{"name":"2017 New York Scientific Data Summit (NYSDS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Implementing a distributed volumetric data analytics toolkit on apache spark\",\"authors\":\"Chao Chen, Yuzhong Yan, Lei Huang, Lijun Qian\",\"doi\":\"10.1109/NYSDS.2017.8085038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multidimensional array is a fundamental data structure that has been widely used in scientific computing, as well as in many big data analytics applications. Distributed multi-dimensional array has been well studied in the High Performance Computing (HPC) platforms; however, little research has been done in the widely-used big data analytics platforms. In this paper, we present an implementation of Distributed Multi-dimensional Array Toolkit (DMAT) on top of the Apache Spark big data analytics platform. The toolkit supports several fashions for multidimensional array distributions, repartition, transposition, access, and data parallelism with a variety of parallel execution templates. This paper introduces the software architecture and implementations of DMAT, and also studies the performance characteristics of some typical multi-dimensional array operations with different configurations.\",\"PeriodicalId\":380859,\"journal\":{\"name\":\"2017 New York Scientific Data Summit (NYSDS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 New York Scientific Data Summit (NYSDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NYSDS.2017.8085038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 New York Scientific Data Summit (NYSDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NYSDS.2017.8085038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

多维数组是一种基本的数据结构,在科学计算和许多大数据分析应用中得到了广泛的应用。分布式多维阵列在高性能计算(HPC)平台上得到了很好的研究;然而,对广泛使用的大数据分析平台的研究却很少。本文提出了一个基于Apache Spark大数据分析平台的分布式多维数组工具包(DMAT)的实现。该工具包支持多维数组分布、重分区、转置、访问和数据并行性的几种方式,并使用各种并行执行模板。本文介绍了DMAT的软件体系结构和实现方法,并研究了几种典型的多维阵列操作在不同配置下的性能特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementing a distributed volumetric data analytics toolkit on apache spark
The multidimensional array is a fundamental data structure that has been widely used in scientific computing, as well as in many big data analytics applications. Distributed multi-dimensional array has been well studied in the High Performance Computing (HPC) platforms; however, little research has been done in the widely-used big data analytics platforms. In this paper, we present an implementation of Distributed Multi-dimensional Array Toolkit (DMAT) on top of the Apache Spark big data analytics platform. The toolkit supports several fashions for multidimensional array distributions, repartition, transposition, access, and data parallelism with a variety of parallel execution templates. This paper introduces the software architecture and implementations of DMAT, and also studies the performance characteristics of some typical multi-dimensional array operations with different configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信