基于Transmon量子比特的高效可调谐微波单光子源

Yu Zhou, Zhihui Peng, Yuta Horiuchi, O. Astafiev, J. Tsai
{"title":"基于Transmon量子比特的高效可调谐微波单光子源","authors":"Yu Zhou, Zhihui Peng, Yuta Horiuchi, O. Astafiev, J. Tsai","doi":"10.1109/ISEC46533.2019.8990896","DOIUrl":null,"url":null,"abstract":"Single-photon sources of high efficiency are of great interest because they are the key elements in many prospective quantum technologies and applications. Based on our previous work, here we demonstrate a high-quality tunable microwave single-photon source based on transmon qubit with intrinsic emission efficiency more than 99%. To further confirm the single-photon property of the source, we study the single-photon interference in a Hanbury-Brown-Twiss (HBT) type setup and measure the correlation functions of the emission field using linear detectors with GPU-enhanced signal processing technique. The antibunching in second-order correlation function is clearly observed. The theoretical calculations agree well with the experimental results. Such a high-quality single-photon source may be used as a building block for quantum communication, simulation and information processing in microwave regime.","PeriodicalId":250606,"journal":{"name":"2019 IEEE International Superconductive Electronics Conference (ISEC)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Tunable Microwave Single-photon Source Based on Transmon Qubit\",\"authors\":\"Yu Zhou, Zhihui Peng, Yuta Horiuchi, O. Astafiev, J. Tsai\",\"doi\":\"10.1109/ISEC46533.2019.8990896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-photon sources of high efficiency are of great interest because they are the key elements in many prospective quantum technologies and applications. Based on our previous work, here we demonstrate a high-quality tunable microwave single-photon source based on transmon qubit with intrinsic emission efficiency more than 99%. To further confirm the single-photon property of the source, we study the single-photon interference in a Hanbury-Brown-Twiss (HBT) type setup and measure the correlation functions of the emission field using linear detectors with GPU-enhanced signal processing technique. The antibunching in second-order correlation function is clearly observed. The theoretical calculations agree well with the experimental results. Such a high-quality single-photon source may be used as a building block for quantum communication, simulation and information processing in microwave regime.\",\"PeriodicalId\":250606,\"journal\":{\"name\":\"2019 IEEE International Superconductive Electronics Conference (ISEC)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Superconductive Electronics Conference (ISEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEC46533.2019.8990896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Superconductive Electronics Conference (ISEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEC46533.2019.8990896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高效率的单光子源是许多未来量子技术和应用的关键因素,因此引起了人们的极大兴趣。在前人工作的基础上,我们展示了一种高质量的可调谐微波单光子源,其固有发射效率超过99%。为了进一步确认源的单光子特性,我们研究了Hanbury-Brown-Twiss (HBT)型装置中的单光子干涉,并使用带有gpu增强信号处理技术的线性探测器测量了发射场的相关函数。二阶相关函数具有明显的反束性。理论计算与实验结果吻合较好。这种高质量的单光子源可以作为微波环境下量子通信、模拟和信息处理的基石。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Tunable Microwave Single-photon Source Based on Transmon Qubit
Single-photon sources of high efficiency are of great interest because they are the key elements in many prospective quantum technologies and applications. Based on our previous work, here we demonstrate a high-quality tunable microwave single-photon source based on transmon qubit with intrinsic emission efficiency more than 99%. To further confirm the single-photon property of the source, we study the single-photon interference in a Hanbury-Brown-Twiss (HBT) type setup and measure the correlation functions of the emission field using linear detectors with GPU-enhanced signal processing technique. The antibunching in second-order correlation function is clearly observed. The theoretical calculations agree well with the experimental results. Such a high-quality single-photon source may be used as a building block for quantum communication, simulation and information processing in microwave regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信