财富变化的绝对vs.相对概念

K. Kontek
{"title":"财富变化的绝对vs.相对概念","authors":"K. Kontek","doi":"10.2139/ssrn.1474229","DOIUrl":null,"url":null,"abstract":"This paper discusses solutions derived from lottery experiments using two alternative assumptions: that people perceive wealth changes as absolute amounts of money; and that people consider wealth changes as a proportion of some reference value dependant on the context of the problem under consideration. The former assumption leads to the design of Prospect Theory, the latter - to a solution closely resembling the utility function hypothesized by Markowitz (1952). This paper presents several crucial arguments for the latter approach and provides strong arguments for rejecting the Prospect Theory paradigm.","PeriodicalId":391080,"journal":{"name":"Decision Making & Negotiations eJournal","volume":"367 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Absolute vs. Relative Notion of Wealth Changes\",\"authors\":\"K. Kontek\",\"doi\":\"10.2139/ssrn.1474229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses solutions derived from lottery experiments using two alternative assumptions: that people perceive wealth changes as absolute amounts of money; and that people consider wealth changes as a proportion of some reference value dependant on the context of the problem under consideration. The former assumption leads to the design of Prospect Theory, the latter - to a solution closely resembling the utility function hypothesized by Markowitz (1952). This paper presents several crucial arguments for the latter approach and provides strong arguments for rejecting the Prospect Theory paradigm.\",\"PeriodicalId\":391080,\"journal\":{\"name\":\"Decision Making & Negotiations eJournal\",\"volume\":\"367 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Making & Negotiations eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1474229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Making & Negotiations eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1474229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文讨论了从彩票实验中得出的解决方案,使用了两个可供选择的假设:人们认为财富变化是绝对数量的钱;人们认为财富的变化是一些参考价值的一部分,这取决于所考虑的问题的背景。前者的假设导致了前景理论的设计,后者的解决方案非常类似于马科维茨(1952)假设的效用函数。本文提出了后一种方法的几个关键论点,并为拒绝前景理论范式提供了强有力的论据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Absolute vs. Relative Notion of Wealth Changes
This paper discusses solutions derived from lottery experiments using two alternative assumptions: that people perceive wealth changes as absolute amounts of money; and that people consider wealth changes as a proportion of some reference value dependant on the context of the problem under consideration. The former assumption leads to the design of Prospect Theory, the latter - to a solution closely resembling the utility function hypothesized by Markowitz (1952). This paper presents several crucial arguments for the latter approach and provides strong arguments for rejecting the Prospect Theory paradigm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信