关于CVP的平均硬度

Jin-Yi Cai
{"title":"关于CVP的平均硬度","authors":"Jin-Yi Cai","doi":"10.1109/SFCS.2001.959905","DOIUrl":null,"url":null,"abstract":"We prove a connection of the worst-case complexity to the average-case complexity based on the Closest Vector Problem (CVP) for lattices. We assume that there is an efficient algorithm which can approximately solve a random instance of CVP, with a non-trivial success probability. For lattices under a certain natural distribution, we show that one can approximately solve several lattice problems (including a version of CVP) efficiently for every lattice with high probability.","PeriodicalId":378126,"journal":{"name":"Proceedings 2001 IEEE International Conference on Cluster Computing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On the average-case hardness of CVP\",\"authors\":\"Jin-Yi Cai\",\"doi\":\"10.1109/SFCS.2001.959905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a connection of the worst-case complexity to the average-case complexity based on the Closest Vector Problem (CVP) for lattices. We assume that there is an efficient algorithm which can approximately solve a random instance of CVP, with a non-trivial success probability. For lattices under a certain natural distribution, we show that one can approximately solve several lattice problems (including a version of CVP) efficiently for every lattice with high probability.\",\"PeriodicalId\":378126,\"journal\":{\"name\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.2001.959905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.2001.959905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

基于格的最接近向量问题(CVP),证明了最坏情况复杂度与平均情况复杂度之间的联系。我们假设存在一种有效的算法,它可以近似求解一个随机的CVP实例,并且成功概率是非平凡的。对于一定自然分布下的格,我们证明了人们可以对每个格以高概率有效地近似求解几个格问题(包括一个版本的CVP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the average-case hardness of CVP
We prove a connection of the worst-case complexity to the average-case complexity based on the Closest Vector Problem (CVP) for lattices. We assume that there is an efficient algorithm which can approximately solve a random instance of CVP, with a non-trivial success probability. For lattices under a certain natural distribution, we show that one can approximately solve several lattice problems (including a version of CVP) efficiently for every lattice with high probability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信