稳定性导向的多导粒子群优化

Weka Steyn, A. Engelbrecht
{"title":"稳定性导向的多导粒子群优化","authors":"Weka Steyn, A. Engelbrecht","doi":"10.1145/3533050.3533059","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-guide particle swarm optimization (MGPSO) algorithm which does not require tuning of its control parameters. Control parameter values are randomly sampled to satisfy theoretically derived stability conditions, eliminating the need for computatinally expensive parameter tuning. In addition, the feasibility of utilizing dynamically decreasing tournament sizes in the selection of the archive guide, as well as a ring neighbourhood topology, is investigated. The results show that random control parameter sampling is a viable alternative to static tuning, most notably when applied to higher numbers of objectives. However, the results show no clear benefit or detriment to utilizing dynamic tournament selection sizes and ring neighbourhood topologies.","PeriodicalId":109214,"journal":{"name":"Proceedings of the 2022 6th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability-Guided Multi-Guide Particle Swarm Optimization\",\"authors\":\"Weka Steyn, A. Engelbrecht\",\"doi\":\"10.1145/3533050.3533059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a multi-guide particle swarm optimization (MGPSO) algorithm which does not require tuning of its control parameters. Control parameter values are randomly sampled to satisfy theoretically derived stability conditions, eliminating the need for computatinally expensive parameter tuning. In addition, the feasibility of utilizing dynamically decreasing tournament sizes in the selection of the archive guide, as well as a ring neighbourhood topology, is investigated. The results show that random control parameter sampling is a viable alternative to static tuning, most notably when applied to higher numbers of objectives. However, the results show no clear benefit or detriment to utilizing dynamic tournament selection sizes and ring neighbourhood topologies.\",\"PeriodicalId\":109214,\"journal\":{\"name\":\"Proceedings of the 2022 6th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 6th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3533050.3533059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533050.3533059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种无需调整控制参数的多导粒子群优化算法(MGPSO)。控制参数值是随机采样的,以满足理论推导的稳定性条件,消除了计算上昂贵的参数整定的需要。此外,本文还研究了动态减少比赛规模在存档指南选择中的可行性,以及环形邻域拓扑结构。结果表明,随机控制参数采样是静态调优的一种可行的替代方案,特别是当应用于更高数量的目标时。然而,结果表明,利用动态锦标赛选择大小和环邻域拓扑没有明显的好处或损害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability-Guided Multi-Guide Particle Swarm Optimization
This paper proposes a multi-guide particle swarm optimization (MGPSO) algorithm which does not require tuning of its control parameters. Control parameter values are randomly sampled to satisfy theoretically derived stability conditions, eliminating the need for computatinally expensive parameter tuning. In addition, the feasibility of utilizing dynamically decreasing tournament sizes in the selection of the archive guide, as well as a ring neighbourhood topology, is investigated. The results show that random control parameter sampling is a viable alternative to static tuning, most notably when applied to higher numbers of objectives. However, the results show no clear benefit or detriment to utilizing dynamic tournament selection sizes and ring neighbourhood topologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信