具有任意周长的非哈密顿3{正则图

M. Haythorpe
{"title":"具有任意周长的非哈密顿3{正则图","authors":"M. Haythorpe","doi":"10.13189/UJAM.2014.020111","DOIUrl":null,"url":null,"abstract":"It is well known that 3-regular graphs with arbitrarily large girth exist. Three constructions are given that use the former to produce non-Hamiltonian 3-regular graphs without reducing the girth, thereby proving that such graphs with arbitrarily large girth also exist. The resulting graphs can be 1-, 2- or 3-edge-connected de- pending on the construction chosen. From the constructions arise (naive) upper bounds on the size of the smallest non-Hamiltonian 3-regular graphs with particular girth. Several examples are given of the smallest such graphs for various choices of girth and connectedness.","PeriodicalId":372283,"journal":{"name":"Universal Journal of Applied Mathematics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Non-Hamiltonian 3{Regular Graphs with Arbitrary Girth\",\"authors\":\"M. Haythorpe\",\"doi\":\"10.13189/UJAM.2014.020111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that 3-regular graphs with arbitrarily large girth exist. Three constructions are given that use the former to produce non-Hamiltonian 3-regular graphs without reducing the girth, thereby proving that such graphs with arbitrarily large girth also exist. The resulting graphs can be 1-, 2- or 3-edge-connected de- pending on the construction chosen. From the constructions arise (naive) upper bounds on the size of the smallest non-Hamiltonian 3-regular graphs with particular girth. Several examples are given of the smallest such graphs for various choices of girth and connectedness.\",\"PeriodicalId\":372283,\"journal\":{\"name\":\"Universal Journal of Applied Mathematics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/UJAM.2014.020111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJAM.2014.020111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

众所周知,存在任意大周长的3正则图。给出了三种构造,利用前者可以得到不减小周长的非哈密顿3正则图,从而证明了具有任意大周长的非哈密顿3正则图的存在。所得到的图形可以是1边、2边或3边连接,这取决于所选择的结构。由这些构造得到了具有特定周长的最小非哈密顿3正则图的大小(朴素)上界。给出了几个最小的图的例子,这些图具有不同的周长和连通性选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Hamiltonian 3{Regular Graphs with Arbitrary Girth
It is well known that 3-regular graphs with arbitrarily large girth exist. Three constructions are given that use the former to produce non-Hamiltonian 3-regular graphs without reducing the girth, thereby proving that such graphs with arbitrarily large girth also exist. The resulting graphs can be 1-, 2- or 3-edge-connected de- pending on the construction chosen. From the constructions arise (naive) upper bounds on the size of the smallest non-Hamiltonian 3-regular graphs with particular girth. Several examples are given of the smallest such graphs for various choices of girth and connectedness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信