时变树形的重构

Takehiro Ito, Yuni Iwamasa, Naoyuki Kamiyama, Yasuaki Kobayashi, Yusuke Kobayashi, Shun-ichi Maezawa, Akira Suzuki
{"title":"时变树形的重构","authors":"Takehiro Ito, Yuni Iwamasa, Naoyuki Kamiyama, Yasuaki Kobayashi, Yusuke Kobayashi, Shun-ichi Maezawa, Akira Suzuki","doi":"10.48550/arXiv.2305.07262","DOIUrl":null,"url":null,"abstract":"An arborescence, which is a directed analogue of a spanning tree in an undirected graph, is one of the most fundamental combinatorial objects in a digraph. In this paper, we study arborescences in digraphs from the viewpoint of combinatorial reconfiguration, which is the field where we study reachability between two configurations of some combinatorial objects via some specified operations. Especially, we consider reconfiguration problems for time-respecting arborescences, which were introduced by Kempe, Kleinberg, and Kumar. We first prove that if the roots of the initial and target time-respecting arborescences are the same, then the target arborescence is always reachable from the initial one and we can find a shortest reconfiguration sequence in polynomial time. Furthermore, we show if the roots are not the same, then the target arborescence may not be reachable from the initial one. On the other hand, we show that we can determine whether the target arborescence is reachable form the initial one in polynomial time. Finally, we prove that it is NP-hard to find a shortest reconfiguration sequence in the case where the roots are not the same. Our results show an interesting contrast to the previous results for (ordinary) arborescences reconfiguration problems.","PeriodicalId":380945,"journal":{"name":"Workshop on Algorithms and Data Structures","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconfiguration of Time-Respecting Arborescences\",\"authors\":\"Takehiro Ito, Yuni Iwamasa, Naoyuki Kamiyama, Yasuaki Kobayashi, Yusuke Kobayashi, Shun-ichi Maezawa, Akira Suzuki\",\"doi\":\"10.48550/arXiv.2305.07262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An arborescence, which is a directed analogue of a spanning tree in an undirected graph, is one of the most fundamental combinatorial objects in a digraph. In this paper, we study arborescences in digraphs from the viewpoint of combinatorial reconfiguration, which is the field where we study reachability between two configurations of some combinatorial objects via some specified operations. Especially, we consider reconfiguration problems for time-respecting arborescences, which were introduced by Kempe, Kleinberg, and Kumar. We first prove that if the roots of the initial and target time-respecting arborescences are the same, then the target arborescence is always reachable from the initial one and we can find a shortest reconfiguration sequence in polynomial time. Furthermore, we show if the roots are not the same, then the target arborescence may not be reachable from the initial one. On the other hand, we show that we can determine whether the target arborescence is reachable form the initial one in polynomial time. Finally, we prove that it is NP-hard to find a shortest reconfiguration sequence in the case where the roots are not the same. Our results show an interesting contrast to the previous results for (ordinary) arborescences reconfiguration problems.\",\"PeriodicalId\":380945,\"journal\":{\"name\":\"Workshop on Algorithms and Data Structures\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Algorithms and Data Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2305.07262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Algorithms and Data Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.07262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

树形是无向图中生成树的有向模拟,是有向图中最基本的组合对象之一。本文从组合重构的角度研究了有向图中的树形,这是研究某些组合对象的两种构型之间通过特定运算的可达性的领域。特别地,我们考虑了由Kempe, Kleinberg和Kumar引入的时变乔木的重构问题。首先证明了如果初始树形和目标树形的根相同,则目标树形总是可以到达初始树形,并且可以在多项式时间内找到最短的重构序列。此外,我们表明,如果根不相同,则目标树可能无法从初始树到达。另一方面,我们证明了我们可以在多项式时间内确定目标树是否可达。最后,我们证明了在根不相同的情况下,找到一个最短的重构序列是np困难的。我们的结果显示了一个有趣的对比,与以前的结果(普通)乔木重构问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconfiguration of Time-Respecting Arborescences
An arborescence, which is a directed analogue of a spanning tree in an undirected graph, is one of the most fundamental combinatorial objects in a digraph. In this paper, we study arborescences in digraphs from the viewpoint of combinatorial reconfiguration, which is the field where we study reachability between two configurations of some combinatorial objects via some specified operations. Especially, we consider reconfiguration problems for time-respecting arborescences, which were introduced by Kempe, Kleinberg, and Kumar. We first prove that if the roots of the initial and target time-respecting arborescences are the same, then the target arborescence is always reachable from the initial one and we can find a shortest reconfiguration sequence in polynomial time. Furthermore, we show if the roots are not the same, then the target arborescence may not be reachable from the initial one. On the other hand, we show that we can determine whether the target arborescence is reachable form the initial one in polynomial time. Finally, we prove that it is NP-hard to find a shortest reconfiguration sequence in the case where the roots are not the same. Our results show an interesting contrast to the previous results for (ordinary) arborescences reconfiguration problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信