基于变分聚类的非平稳时间序列非线性随机微分方程的统计学习

V. Boyko, S. Krumscheid, N. Vercauteren
{"title":"基于变分聚类的非平稳时间序列非线性随机微分方程的统计学习","authors":"V. Boyko, S. Krumscheid, N. Vercauteren","doi":"10.1137/21m1403989","DOIUrl":null,"url":null,"abstract":"Parameter estimation for non-stationary stochastic differential equations (SDE) with an arbitrary nonlinear drift, and nonlinear diffusion is accomplished in combination with a non-parametric clustering methodology. Such a model-based clustering approach includes a quadratic programming (QP) problem with equality and inequality constraints. We couple the QP problem to a closed-form likelihood function approach based on suitable Hermite expansion to approximate the parameter values of the SDE model. The classification problem provides a smooth indicator function, which enables us to recover the underlying temporal parameter modulation of the one-dimensional SDE. The numerical examples show that the clustering approach recovers a hidden functional relationship between the SDE model parameters and an additional auxiliary process. The study builds upon this functional relationship to develop closed-form, non-stationary, data-driven stochastic models for multiscale dynamical systems in real-world applications.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Statistical Learning of Nonlinear Stochastic Differential Equations from Nonstationary Time Series using Variational Clustering\",\"authors\":\"V. Boyko, S. Krumscheid, N. Vercauteren\",\"doi\":\"10.1137/21m1403989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parameter estimation for non-stationary stochastic differential equations (SDE) with an arbitrary nonlinear drift, and nonlinear diffusion is accomplished in combination with a non-parametric clustering methodology. Such a model-based clustering approach includes a quadratic programming (QP) problem with equality and inequality constraints. We couple the QP problem to a closed-form likelihood function approach based on suitable Hermite expansion to approximate the parameter values of the SDE model. The classification problem provides a smooth indicator function, which enables us to recover the underlying temporal parameter modulation of the one-dimensional SDE. The numerical examples show that the clustering approach recovers a hidden functional relationship between the SDE model parameters and an additional auxiliary process. The study builds upon this functional relationship to develop closed-form, non-stationary, data-driven stochastic models for multiscale dynamical systems in real-world applications.\",\"PeriodicalId\":313703,\"journal\":{\"name\":\"Multiscale Model. Simul.\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Model. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1403989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1403989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

结合非参数聚类方法,对具有任意非线性漂移和扩散的非平稳随机微分方程进行参数估计。这种基于模型的聚类方法包括一个具有等式和不等式约束的二次规划(QP)问题。我们将QP问题与一种基于适当Hermite展开的封闭似然函数方法耦合,以近似SDE模型的参数值。分类问题提供了一个平滑的指示函数,使我们能够恢复一维SDE的底层时间参数调制。数值算例表明,聚类方法恢复了SDE模型参数与附加辅助过程之间的隐函数关系。该研究建立在这种函数关系的基础上,为实际应用中的多尺度动力系统开发了封闭形式、非平稳、数据驱动的随机模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Learning of Nonlinear Stochastic Differential Equations from Nonstationary Time Series using Variational Clustering
Parameter estimation for non-stationary stochastic differential equations (SDE) with an arbitrary nonlinear drift, and nonlinear diffusion is accomplished in combination with a non-parametric clustering methodology. Such a model-based clustering approach includes a quadratic programming (QP) problem with equality and inequality constraints. We couple the QP problem to a closed-form likelihood function approach based on suitable Hermite expansion to approximate the parameter values of the SDE model. The classification problem provides a smooth indicator function, which enables us to recover the underlying temporal parameter modulation of the one-dimensional SDE. The numerical examples show that the clustering approach recovers a hidden functional relationship between the SDE model parameters and an additional auxiliary process. The study builds upon this functional relationship to develop closed-form, non-stationary, data-driven stochastic models for multiscale dynamical systems in real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信