集群环境下作业调度的并行贪心遗传算法

Gholamali Rahnavard, Jharrod Lafon, Hadi Sharifi
{"title":"集群环境下作业调度的并行贪心遗传算法","authors":"Gholamali Rahnavard, Jharrod Lafon, Hadi Sharifi","doi":"10.1109/CLUSTER.2011.57","DOIUrl":null,"url":null,"abstract":"Recently, many scientific researchers and applications work on large amounts of data or use high performance computing resources. A high performance cluster is developed to handle massively parallel processes. To manage the resources for dynamic requests with optimal usage, we have to maximize the utilization rate of clusters. In this paper we provide a parallel genetic algorithm to schedule the jobs for different classes of clusters. The greedy approach is used to create an initial population for the genetic algorithm. We applied the master/slave method in parallelism to manage the schedulers and improve the performance of the main scheduler. Analyzing the complexity of the algorithm shows that it can be more efficient than similar algorithms.","PeriodicalId":200830,"journal":{"name":"2011 IEEE International Conference on Cluster Computing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parallel Greedy Genetic Algorithm for Job Scheduling in Cluster Enviornments\",\"authors\":\"Gholamali Rahnavard, Jharrod Lafon, Hadi Sharifi\",\"doi\":\"10.1109/CLUSTER.2011.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, many scientific researchers and applications work on large amounts of data or use high performance computing resources. A high performance cluster is developed to handle massively parallel processes. To manage the resources for dynamic requests with optimal usage, we have to maximize the utilization rate of clusters. In this paper we provide a parallel genetic algorithm to schedule the jobs for different classes of clusters. The greedy approach is used to create an initial population for the genetic algorithm. We applied the master/slave method in parallelism to manage the schedulers and improve the performance of the main scheduler. Analyzing the complexity of the algorithm shows that it can be more efficient than similar algorithms.\",\"PeriodicalId\":200830,\"journal\":{\"name\":\"2011 IEEE International Conference on Cluster Computing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTER.2011.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2011.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,许多科学研究人员和应用程序都需要处理大量数据或使用高性能计算资源。开发了高性能集群来处理大规模并行进程。为了以最佳的方式管理动态请求的资源,我们必须最大化集群的利用率。本文提出了一种并行遗传算法来调度不同类型集群的作业。采用贪心方法为遗传算法创建初始种群。我们采用并行的主/从方法来管理调度程序,并提高主调度程序的性能。对算法复杂度的分析表明,该算法比同类算法具有更高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Greedy Genetic Algorithm for Job Scheduling in Cluster Enviornments
Recently, many scientific researchers and applications work on large amounts of data or use high performance computing resources. A high performance cluster is developed to handle massively parallel processes. To manage the resources for dynamic requests with optimal usage, we have to maximize the utilization rate of clusters. In this paper we provide a parallel genetic algorithm to schedule the jobs for different classes of clusters. The greedy approach is used to create an initial population for the genetic algorithm. We applied the master/slave method in parallelism to manage the schedulers and improve the performance of the main scheduler. Analyzing the complexity of the algorithm shows that it can be more efficient than similar algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信