Zhanyuan Zhang, Benson Yuan, Michael McCoyd, David A. Wagner
{"title":"Clipped BagNet:用Clipped Bag-of-features防御贴纸攻击","authors":"Zhanyuan Zhang, Benson Yuan, Michael McCoyd, David A. Wagner","doi":"10.1109/SPW50608.2020.00026","DOIUrl":null,"url":null,"abstract":"Many works have demonstrated that neural networks are vulnerable to adversarial examples. We examine the adversarial sticker attack, where the attacker places a sticker somewhere on an image to induce it to be misclassified. We take a first step towards defending against such attacks using clipped BagNet, which bounds the influence that any limited-size sticker can have on the final classification. We evaluate our scheme on ImageNet and show that it provides strong security against targeted PGD attacks and gradient-free attacks, and yields certified security for a 95% of images against a targeted 20 × 20 pixel attack.","PeriodicalId":413600,"journal":{"name":"2020 IEEE Security and Privacy Workshops (SPW)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Clipped BagNet: Defending Against Sticker Attacks with Clipped Bag-of-features\",\"authors\":\"Zhanyuan Zhang, Benson Yuan, Michael McCoyd, David A. Wagner\",\"doi\":\"10.1109/SPW50608.2020.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many works have demonstrated that neural networks are vulnerable to adversarial examples. We examine the adversarial sticker attack, where the attacker places a sticker somewhere on an image to induce it to be misclassified. We take a first step towards defending against such attacks using clipped BagNet, which bounds the influence that any limited-size sticker can have on the final classification. We evaluate our scheme on ImageNet and show that it provides strong security against targeted PGD attacks and gradient-free attacks, and yields certified security for a 95% of images against a targeted 20 × 20 pixel attack.\",\"PeriodicalId\":413600,\"journal\":{\"name\":\"2020 IEEE Security and Privacy Workshops (SPW)\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Security and Privacy Workshops (SPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPW50608.2020.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Security and Privacy Workshops (SPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW50608.2020.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Clipped BagNet: Defending Against Sticker Attacks with Clipped Bag-of-features
Many works have demonstrated that neural networks are vulnerable to adversarial examples. We examine the adversarial sticker attack, where the attacker places a sticker somewhere on an image to induce it to be misclassified. We take a first step towards defending against such attacks using clipped BagNet, which bounds the influence that any limited-size sticker can have on the final classification. We evaluate our scheme on ImageNet and show that it provides strong security against targeted PGD attacks and gradient-free attacks, and yields certified security for a 95% of images against a targeted 20 × 20 pixel attack.