Yuzhong Huang, Xue Bai, Oliver Wang, Fabian Caba, A. Agarwala
{"title":"学习从编辑的视频中剪切","authors":"Yuzhong Huang, Xue Bai, Oliver Wang, Fabian Caba, A. Agarwala","doi":"10.1109/ICCVW54120.2021.00360","DOIUrl":null,"url":null,"abstract":"In this work we propose a new approach for accelerating the video editing process by identifying good moments in time to cut unedited videos. We first validate that there is indeed a consensus among human viewers about good and bad cut moments with a user study, and then formulate this problem as a classification task. In order to train for such a task, we propose a self-supervised scheme that only requires pre-existing edited videos for training, of which there is large and diverse data readily available. We then propose a contrastive learning framework to train a 3D ResNet model to predict good regions to cut. We validate our method with a second user study, which indicates that clips generated by our model are preferred over a number of baselines.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"198200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning Where to Cut from Edited Videos\",\"authors\":\"Yuzhong Huang, Xue Bai, Oliver Wang, Fabian Caba, A. Agarwala\",\"doi\":\"10.1109/ICCVW54120.2021.00360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we propose a new approach for accelerating the video editing process by identifying good moments in time to cut unedited videos. We first validate that there is indeed a consensus among human viewers about good and bad cut moments with a user study, and then formulate this problem as a classification task. In order to train for such a task, we propose a self-supervised scheme that only requires pre-existing edited videos for training, of which there is large and diverse data readily available. We then propose a contrastive learning framework to train a 3D ResNet model to predict good regions to cut. We validate our method with a second user study, which indicates that clips generated by our model are preferred over a number of baselines.\",\"PeriodicalId\":226794,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"volume\":\"198200 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVW54120.2021.00360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this work we propose a new approach for accelerating the video editing process by identifying good moments in time to cut unedited videos. We first validate that there is indeed a consensus among human viewers about good and bad cut moments with a user study, and then formulate this problem as a classification task. In order to train for such a task, we propose a self-supervised scheme that only requires pre-existing edited videos for training, of which there is large and diverse data readily available. We then propose a contrastive learning framework to train a 3D ResNet model to predict good regions to cut. We validate our method with a second user study, which indicates that clips generated by our model are preferred over a number of baselines.