利用定向探索改进多智能体合作

Wiem Zemzem, Inès Hosni
{"title":"利用定向探索改进多智能体合作","authors":"Wiem Zemzem, Inès Hosni","doi":"10.1109/ICCIS49240.2020.9257684","DOIUrl":null,"url":null,"abstract":"In this work, we are addressing the problem of fully cooperative multi-agent system (MASs) with the same common goal for all agents. Coordination question is the main focus in such systems: how to ensure that the agents' own decisions contribute to the group's jointly optimal decisions? To solve this, a new multi-agent reinforcement learning algorithm, named TM LRVS Qlearning, is introduced and tested. The usefulness of this new method is shown using a simulated hunting game.","PeriodicalId":425637,"journal":{"name":"2020 2nd International Conference on Computer and Information Sciences (ICCIS)","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving Multi-Agent Cooperation Using Directed Exploration\",\"authors\":\"Wiem Zemzem, Inès Hosni\",\"doi\":\"10.1109/ICCIS49240.2020.9257684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we are addressing the problem of fully cooperative multi-agent system (MASs) with the same common goal for all agents. Coordination question is the main focus in such systems: how to ensure that the agents' own decisions contribute to the group's jointly optimal decisions? To solve this, a new multi-agent reinforcement learning algorithm, named TM LRVS Qlearning, is introduced and tested. The usefulness of this new method is shown using a simulated hunting game.\",\"PeriodicalId\":425637,\"journal\":{\"name\":\"2020 2nd International Conference on Computer and Information Sciences (ICCIS)\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Computer and Information Sciences (ICCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS49240.2020.9257684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Computer and Information Sciences (ICCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS49240.2020.9257684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们正在解决具有相同共同目标的所有智能体的完全合作多智能体系统(MASs)问题。协调问题是这类系统的主要焦点:如何确保个体自身的决策有助于群体的共同最优决策?为了解决这一问题,本文介绍并测试了一种新的多智能体强化学习算法TM LRVS Qlearning。通过一个模拟狩猎游戏,证明了这种新方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Multi-Agent Cooperation Using Directed Exploration
In this work, we are addressing the problem of fully cooperative multi-agent system (MASs) with the same common goal for all agents. Coordination question is the main focus in such systems: how to ensure that the agents' own decisions contribute to the group's jointly optimal decisions? To solve this, a new multi-agent reinforcement learning algorithm, named TM LRVS Qlearning, is introduced and tested. The usefulness of this new method is shown using a simulated hunting game.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信