{"title":"利用定向探索改进多智能体合作","authors":"Wiem Zemzem, Inès Hosni","doi":"10.1109/ICCIS49240.2020.9257684","DOIUrl":null,"url":null,"abstract":"In this work, we are addressing the problem of fully cooperative multi-agent system (MASs) with the same common goal for all agents. Coordination question is the main focus in such systems: how to ensure that the agents' own decisions contribute to the group's jointly optimal decisions? To solve this, a new multi-agent reinforcement learning algorithm, named TM LRVS Qlearning, is introduced and tested. The usefulness of this new method is shown using a simulated hunting game.","PeriodicalId":425637,"journal":{"name":"2020 2nd International Conference on Computer and Information Sciences (ICCIS)","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving Multi-Agent Cooperation Using Directed Exploration\",\"authors\":\"Wiem Zemzem, Inès Hosni\",\"doi\":\"10.1109/ICCIS49240.2020.9257684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we are addressing the problem of fully cooperative multi-agent system (MASs) with the same common goal for all agents. Coordination question is the main focus in such systems: how to ensure that the agents' own decisions contribute to the group's jointly optimal decisions? To solve this, a new multi-agent reinforcement learning algorithm, named TM LRVS Qlearning, is introduced and tested. The usefulness of this new method is shown using a simulated hunting game.\",\"PeriodicalId\":425637,\"journal\":{\"name\":\"2020 2nd International Conference on Computer and Information Sciences (ICCIS)\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Computer and Information Sciences (ICCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS49240.2020.9257684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Computer and Information Sciences (ICCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS49240.2020.9257684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Multi-Agent Cooperation Using Directed Exploration
In this work, we are addressing the problem of fully cooperative multi-agent system (MASs) with the same common goal for all agents. Coordination question is the main focus in such systems: how to ensure that the agents' own decisions contribute to the group's jointly optimal decisions? To solve this, a new multi-agent reinforcement learning algorithm, named TM LRVS Qlearning, is introduced and tested. The usefulness of this new method is shown using a simulated hunting game.