{"title":"基于总变差最小化的SRµCT光纤图像去噪","authors":"Joakim Lindblad, Natasa Sladoje, T. Lukić","doi":"10.1109/ICPR.2010.1116","DOIUrl":null,"url":null,"abstract":"SRµCT images of paper and pulp fiber materials are characterized by a low signal to noise ratio. De-noising is therefore a common preprocessing step before segmentation into fiber and background components. We suggest a de-noising method based on total variation minimization using a modified Spectral Conjugate Gradient algorithm. Quantitative evaluation performed on synthetic 3D data and qualitative evaluation on real 3D paper fiber data confirm appropriateness of the suggested method for the particular application.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"De-noising of SRµCT Fiber Images by Total Variation Minimization\",\"authors\":\"Joakim Lindblad, Natasa Sladoje, T. Lukić\",\"doi\":\"10.1109/ICPR.2010.1116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SRµCT images of paper and pulp fiber materials are characterized by a low signal to noise ratio. De-noising is therefore a common preprocessing step before segmentation into fiber and background components. We suggest a de-noising method based on total variation minimization using a modified Spectral Conjugate Gradient algorithm. Quantitative evaluation performed on synthetic 3D data and qualitative evaluation on real 3D paper fiber data confirm appropriateness of the suggested method for the particular application.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.1116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.1116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
De-noising of SRµCT Fiber Images by Total Variation Minimization
SRµCT images of paper and pulp fiber materials are characterized by a low signal to noise ratio. De-noising is therefore a common preprocessing step before segmentation into fiber and background components. We suggest a de-noising method based on total variation minimization using a modified Spectral Conjugate Gradient algorithm. Quantitative evaluation performed on synthetic 3D data and qualitative evaluation on real 3D paper fiber data confirm appropriateness of the suggested method for the particular application.