$\mathbb Z^2$-subshift中的非周期点

Anaël Grandjean, Benjamin Hellouin de Menibus, Pascal Vanier
{"title":"$\\mathbb Z^2$-subshift中的非周期点","authors":"Anaël Grandjean, Benjamin Hellouin de Menibus, Pascal Vanier","doi":"10.4230/LIPICS.ICALP.2018.496","DOIUrl":null,"url":null,"abstract":"We consider the structure of aperiodic points in $\\mathbb Z^2$-subshifts, and in particular the positions at which they fail to be periodic. We prove that if a $\\mathbb Z^2$-subshift contains points whose smallest period is arbitrarily large, then it contains an aperiodic point. This lets us characterise the computational difficulty of deciding if an $\\mathbb Z^2$-subshift of finite type contains an aperiodic point. Another consequence is that $\\mathbb Z^2$-subshifts with no aperiodic point have a very strong dynamical structure and are almost topologically conjugate to some $\\mathbb Z$-subshift. Finally, we use this result to characterize sets of possible slopes of periodicity for $\\mathbb Z^3$-subshifts of finite type.","PeriodicalId":111854,"journal":{"name":"arXiv: Discrete Mathematics","volume":"368 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Aperiodic points in $\\\\mathbb Z^2$-subshifts\",\"authors\":\"Anaël Grandjean, Benjamin Hellouin de Menibus, Pascal Vanier\",\"doi\":\"10.4230/LIPICS.ICALP.2018.496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the structure of aperiodic points in $\\\\mathbb Z^2$-subshifts, and in particular the positions at which they fail to be periodic. We prove that if a $\\\\mathbb Z^2$-subshift contains points whose smallest period is arbitrarily large, then it contains an aperiodic point. This lets us characterise the computational difficulty of deciding if an $\\\\mathbb Z^2$-subshift of finite type contains an aperiodic point. Another consequence is that $\\\\mathbb Z^2$-subshifts with no aperiodic point have a very strong dynamical structure and are almost topologically conjugate to some $\\\\mathbb Z$-subshift. Finally, we use this result to characterize sets of possible slopes of periodicity for $\\\\mathbb Z^3$-subshifts of finite type.\",\"PeriodicalId\":111854,\"journal\":{\"name\":\"arXiv: Discrete Mathematics\",\"volume\":\"368 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPICS.ICALP.2018.496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPICS.ICALP.2018.496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了$\mathbb Z^2$-子位移中非周期点的结构,特别是它们不具有周期性的位置。我们证明了如果一个$\mathbb Z^2$-subshift包含最小周期任意大的点,那么它包含一个非周期点。这让我们描述了确定有限类型的$\mathbb Z^2$-子移是否包含非周期点的计算难度。另一个结果是,没有非周期点的$\mathbb Z$-subshift具有很强的动力学结构,并且几乎与某个$\mathbb Z$-subshift拓扑共轭。最后,我们利用这一结果来描述有限型$\mathbb Z^3$-子移位的可能的周期性斜率集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aperiodic points in $\mathbb Z^2$-subshifts
We consider the structure of aperiodic points in $\mathbb Z^2$-subshifts, and in particular the positions at which they fail to be periodic. We prove that if a $\mathbb Z^2$-subshift contains points whose smallest period is arbitrarily large, then it contains an aperiodic point. This lets us characterise the computational difficulty of deciding if an $\mathbb Z^2$-subshift of finite type contains an aperiodic point. Another consequence is that $\mathbb Z^2$-subshifts with no aperiodic point have a very strong dynamical structure and are almost topologically conjugate to some $\mathbb Z$-subshift. Finally, we use this result to characterize sets of possible slopes of periodicity for $\mathbb Z^3$-subshifts of finite type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信