因子图中信念传播的数据并行性

N. Ma, Yinglong Xia, V. Prasanna
{"title":"因子图中信念传播的数据并行性","authors":"N. Ma, Yinglong Xia, V. Prasanna","doi":"10.1109/SBAC-PAD.2011.34","DOIUrl":null,"url":null,"abstract":"We investigate data parallelism for belief propagation in a cyclic factor graphs on multicore/many core processors. Belief propagation is a key problem in exploring factor graphs, a probabilistic graphical model that has found applications in many domains. In this paper, we identify basic operations called node level primitives for updating the distribution tables in a factor graph. We develop algorithms for these primitives to explore data parallelism. We also propose a complete belief propagation algorithm to perform exact inference in such graphs. We implement the proposed algorithms on state-of-the-art multicore processors and show that the proposed algorithms exhibit good scalability using a representative set of factor graphs. On a 32-core Intel Nehalem-EX based system, we achieve 30× speedup for the primitives and 29× for the complete algorithm using factor graphs with large distribution tables.","PeriodicalId":390734,"journal":{"name":"2011 23rd International Symposium on Computer Architecture and High Performance Computing","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Data Parallelism for Belief Propagation in Factor Graphs\",\"authors\":\"N. Ma, Yinglong Xia, V. Prasanna\",\"doi\":\"10.1109/SBAC-PAD.2011.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate data parallelism for belief propagation in a cyclic factor graphs on multicore/many core processors. Belief propagation is a key problem in exploring factor graphs, a probabilistic graphical model that has found applications in many domains. In this paper, we identify basic operations called node level primitives for updating the distribution tables in a factor graph. We develop algorithms for these primitives to explore data parallelism. We also propose a complete belief propagation algorithm to perform exact inference in such graphs. We implement the proposed algorithms on state-of-the-art multicore processors and show that the proposed algorithms exhibit good scalability using a representative set of factor graphs. On a 32-core Intel Nehalem-EX based system, we achieve 30× speedup for the primitives and 29× for the complete algorithm using factor graphs with large distribution tables.\",\"PeriodicalId\":390734,\"journal\":{\"name\":\"2011 23rd International Symposium on Computer Architecture and High Performance Computing\",\"volume\":\"200 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 23rd International Symposium on Computer Architecture and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PAD.2011.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 23rd International Symposium on Computer Architecture and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD.2011.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

研究了多核/多核处理器上循环因子图中信念传播的数据并行性。因子图是一种概率图模型,在许多领域都有应用。在本文中,我们确定了用于更新因子图中的分布表的称为节点级原语的基本操作。我们为这些原语开发算法来探索数据并行性。我们还提出了一个完整的信念传播算法来对这种图进行精确的推理。我们在最先进的多核处理器上实现了所提出的算法,并表明所提出的算法使用一组具有代表性的因子图显示出良好的可扩展性。在基于32核Intel Nehalem-EX的系统上,我们使用带有大型分布表的因子图实现了原语30倍的加速和完整算法29倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Parallelism for Belief Propagation in Factor Graphs
We investigate data parallelism for belief propagation in a cyclic factor graphs on multicore/many core processors. Belief propagation is a key problem in exploring factor graphs, a probabilistic graphical model that has found applications in many domains. In this paper, we identify basic operations called node level primitives for updating the distribution tables in a factor graph. We develop algorithms for these primitives to explore data parallelism. We also propose a complete belief propagation algorithm to perform exact inference in such graphs. We implement the proposed algorithms on state-of-the-art multicore processors and show that the proposed algorithms exhibit good scalability using a representative set of factor graphs. On a 32-core Intel Nehalem-EX based system, we achieve 30× speedup for the primitives and 29× for the complete algorithm using factor graphs with large distribution tables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信