杂乱环境中敌对单位聚集的时空聚类

S. Das, P. Kanjilal, D. Lawless
{"title":"杂乱环境中敌对单位聚集的时空聚类","authors":"S. Das, P. Kanjilal, D. Lawless","doi":"10.1109/ICIF.2006.301672","DOIUrl":null,"url":null,"abstract":"We describe a novel clustering approach for aggregating mobile (typically potentially hostile) units in cluttered urban environments. The approach consists of a suite of spatiotemporal clustering algorithms that leverage the wealth of military sensor data available to provide insight into \"what is strange\" about a given situation, without knowing beforehand what exactly we are looking for. The algorithms perform a space and time-series analysis of sensor messages independently of any contextual or semantic information. The algorithms can, for example, detect patterns and track for spatially correlated moving units over time within the environment. The patterns thus detected trigger follow-up assessment of the newly developed situations, resulting in invocations of various doctrine-based computational models to identify higher-level situations (e.g. attack, ambush, interdiction, insurgency). We provide some experimental results analyzing the performance of the clustering algorithms","PeriodicalId":248061,"journal":{"name":"2006 9th International Conference on Information Fusion","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spatiotemporal Clustering for Aggregating Hostile Units in Cluttered Environments\",\"authors\":\"S. Das, P. Kanjilal, D. Lawless\",\"doi\":\"10.1109/ICIF.2006.301672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a novel clustering approach for aggregating mobile (typically potentially hostile) units in cluttered urban environments. The approach consists of a suite of spatiotemporal clustering algorithms that leverage the wealth of military sensor data available to provide insight into \\\"what is strange\\\" about a given situation, without knowing beforehand what exactly we are looking for. The algorithms perform a space and time-series analysis of sensor messages independently of any contextual or semantic information. The algorithms can, for example, detect patterns and track for spatially correlated moving units over time within the environment. The patterns thus detected trigger follow-up assessment of the newly developed situations, resulting in invocations of various doctrine-based computational models to identify higher-level situations (e.g. attack, ambush, interdiction, insurgency). We provide some experimental results analyzing the performance of the clustering algorithms\",\"PeriodicalId\":248061,\"journal\":{\"name\":\"2006 9th International Conference on Information Fusion\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 9th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2006.301672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2006.301672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们描述了一种新的聚类方法,用于在混乱的城市环境中聚集移动(通常是潜在的敌对)单位。该方法由一套时空聚类算法组成,该算法利用丰富的军事传感器数据,在不事先知道我们究竟在寻找什么的情况下,对给定情况的“奇怪之处”提供洞察。该算法独立于任何上下文或语义信息执行传感器消息的空间和时间序列分析。例如,该算法可以检测模式并跟踪环境中随时间推移的空间相关移动单元。由此发现的模式触发了对新发展局势的后续评估,导致调用各种基于理论的计算模型来识别更高级别的局势(例如攻击、伏击、拦截、叛乱)。我们提供了一些实验结果来分析聚类算法的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatiotemporal Clustering for Aggregating Hostile Units in Cluttered Environments
We describe a novel clustering approach for aggregating mobile (typically potentially hostile) units in cluttered urban environments. The approach consists of a suite of spatiotemporal clustering algorithms that leverage the wealth of military sensor data available to provide insight into "what is strange" about a given situation, without knowing beforehand what exactly we are looking for. The algorithms perform a space and time-series analysis of sensor messages independently of any contextual or semantic information. The algorithms can, for example, detect patterns and track for spatially correlated moving units over time within the environment. The patterns thus detected trigger follow-up assessment of the newly developed situations, resulting in invocations of various doctrine-based computational models to identify higher-level situations (e.g. attack, ambush, interdiction, insurgency). We provide some experimental results analyzing the performance of the clustering algorithms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信