变化的词汇:汉语历时性语义转移的评价

Jing Chen, Emmanuele Chersoni, Chu-Ren Huang
{"title":"变化的词汇:汉语历时性语义转移的评价","authors":"Jing Chen, Emmanuele Chersoni, Chu-Ren Huang","doi":"10.18653/v1/2022.lchange-1.11","DOIUrl":null,"url":null,"abstract":"Recent research has brought a wind of using computational approaches to the classic topic of semantic change, aiming to tackle one of the most challenging issues in the evolution of human language. While several methods for detecting semantic change have been proposed, such studies are limited to a few languages, where evaluation datasets are available. This paper presents the first dataset for evaluating Chinese semantic change in contexts preceding and following the Reform and Opening-up, covering a 50-year period in Modern Chinese. Following the DURel framework, we collected 6,000 human judgments for the dataset. We also reported the performance of alignment-based word embedding models on this evaluation dataset, achieving high and significant correlation scores.","PeriodicalId":120650,"journal":{"name":"Workshop on Computational Approaches to Historical Language Change","volume":"359 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Lexicon of Changes: Towards the Evaluation of Diachronic Semantic Shift in Chinese\",\"authors\":\"Jing Chen, Emmanuele Chersoni, Chu-Ren Huang\",\"doi\":\"10.18653/v1/2022.lchange-1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research has brought a wind of using computational approaches to the classic topic of semantic change, aiming to tackle one of the most challenging issues in the evolution of human language. While several methods for detecting semantic change have been proposed, such studies are limited to a few languages, where evaluation datasets are available. This paper presents the first dataset for evaluating Chinese semantic change in contexts preceding and following the Reform and Opening-up, covering a 50-year period in Modern Chinese. Following the DURel framework, we collected 6,000 human judgments for the dataset. We also reported the performance of alignment-based word embedding models on this evaluation dataset, achieving high and significant correlation scores.\",\"PeriodicalId\":120650,\"journal\":{\"name\":\"Workshop on Computational Approaches to Historical Language Change\",\"volume\":\"359 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Computational Approaches to Historical Language Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.lchange-1.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Computational Approaches to Historical Language Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.lchange-1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

最近的研究带来了一股使用计算方法来研究语义变化的经典主题的风潮,旨在解决人类语言进化中最具挑战性的问题之一。虽然已经提出了几种检测语义变化的方法,但这些研究仅限于几种语言,其中评估数据集是可用的。本文提出了第一个用于评估改革开放前后汉语语境语义变化的数据集,涵盖了现代汉语50年的历史。遵循DURel框架,我们为数据集收集了6000个人类判断。我们还报告了基于对齐的词嵌入模型在该评估数据集上的性能,获得了高且显著的相关分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lexicon of Changes: Towards the Evaluation of Diachronic Semantic Shift in Chinese
Recent research has brought a wind of using computational approaches to the classic topic of semantic change, aiming to tackle one of the most challenging issues in the evolution of human language. While several methods for detecting semantic change have been proposed, such studies are limited to a few languages, where evaluation datasets are available. This paper presents the first dataset for evaluating Chinese semantic change in contexts preceding and following the Reform and Opening-up, covering a 50-year period in Modern Chinese. Following the DURel framework, we collected 6,000 human judgments for the dataset. We also reported the performance of alignment-based word embedding models on this evaluation dataset, achieving high and significant correlation scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信