基于Doc2Vec的新闻门户网站相关文章推荐方法

Bogdan Walek, Patrik Müller
{"title":"基于Doc2Vec的新闻门户网站相关文章推荐方法","authors":"Bogdan Walek, Patrik Müller","doi":"10.1109/AIKE55402.2022.00010","DOIUrl":null,"url":null,"abstract":"News portals are among the most popular websites, and their main goal is to bring the latest news to their readers. Also, it is important to provide relevant content to various types of readers. In this article, we propose an approach for recommending relevant articles on the news portal based on the content of a specific article. The proposed approach is based on Doc2Vec. The main steps of the proposed approach and training of the Doc2Vec model are described. The article also deals with text similarity problems and limitations of the Czech language in the context of recommending relevant articles. For experiment verification of our approach, random articles from the selected news portal were selected. For each article, our approach recommends the most relevant similar articles. Then, the relevant and irrelevant articles were marked. And finally, the ratio of proposed relevant articles for each random article was calculated. The experimental results show the accuracy and relevancy of the proposed approach.","PeriodicalId":441077,"journal":{"name":"2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approach for recommending relevant articles in news portal based on Doc2Vec\",\"authors\":\"Bogdan Walek, Patrik Müller\",\"doi\":\"10.1109/AIKE55402.2022.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"News portals are among the most popular websites, and their main goal is to bring the latest news to their readers. Also, it is important to provide relevant content to various types of readers. In this article, we propose an approach for recommending relevant articles on the news portal based on the content of a specific article. The proposed approach is based on Doc2Vec. The main steps of the proposed approach and training of the Doc2Vec model are described. The article also deals with text similarity problems and limitations of the Czech language in the context of recommending relevant articles. For experiment verification of our approach, random articles from the selected news portal were selected. For each article, our approach recommends the most relevant similar articles. Then, the relevant and irrelevant articles were marked. And finally, the ratio of proposed relevant articles for each random article was calculated. The experimental results show the accuracy and relevancy of the proposed approach.\",\"PeriodicalId\":441077,\"journal\":{\"name\":\"2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)\",\"volume\":\"165 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIKE55402.2022.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIKE55402.2022.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新闻门户网站是最受欢迎的网站之一,它们的主要目标是向读者提供最新的新闻。此外,为不同类型的读者提供相关的内容也很重要。在本文中,我们提出了一种基于特定文章内容在新闻门户网站上推荐相关文章的方法。提出的方法基于Doc2Vec。描述了该方法的主要步骤和Doc2Vec模型的训练。文章还讨论了捷克语在推荐相关文章时的文本相似问题和局限性。为了实验验证我们的方法,我们从选定的新闻门户网站中随机选择文章。对于每篇文章,我们的方法会推荐最相关的类似文章。然后,对相关和不相关的文章进行标记。最后,计算每一篇随机文章的建议相关文章的比例。实验结果表明了该方法的准确性和相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approach for recommending relevant articles in news portal based on Doc2Vec
News portals are among the most popular websites, and their main goal is to bring the latest news to their readers. Also, it is important to provide relevant content to various types of readers. In this article, we propose an approach for recommending relevant articles on the news portal based on the content of a specific article. The proposed approach is based on Doc2Vec. The main steps of the proposed approach and training of the Doc2Vec model are described. The article also deals with text similarity problems and limitations of the Czech language in the context of recommending relevant articles. For experiment verification of our approach, random articles from the selected news portal were selected. For each article, our approach recommends the most relevant similar articles. Then, the relevant and irrelevant articles were marked. And finally, the ratio of proposed relevant articles for each random article was calculated. The experimental results show the accuracy and relevancy of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信