多类分类的改进非并行超平面支持向量机

F. Bai, Ruijie Liu
{"title":"多类分类的改进非并行超平面支持向量机","authors":"F. Bai, Ruijie Liu","doi":"10.1109/ICDSP.2018.8631672","DOIUrl":null,"url":null,"abstract":"In this paper, we present an improved nonparallel hyperplanes classifier for multi-class classification, termed as INHCMC. As in the nonparallel support vector machine (NPSVM) for binary classification, the ε-insensitive loss function is adopted in the primal problems of multi-class classification to improve the sparseness associated with the nonparallel hyperplanes classifier for multi-class classification (NHCMC) where the quadratic loss function is used. Experimental results on some benchmark datasets are reported to show the effectiveness of our method in terms of sparseness and classification accuracy.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved Nonparallel Hyperplanes Support Vector Machines for Multi-class Classification\",\"authors\":\"F. Bai, Ruijie Liu\",\"doi\":\"10.1109/ICDSP.2018.8631672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an improved nonparallel hyperplanes classifier for multi-class classification, termed as INHCMC. As in the nonparallel support vector machine (NPSVM) for binary classification, the ε-insensitive loss function is adopted in the primal problems of multi-class classification to improve the sparseness associated with the nonparallel hyperplanes classifier for multi-class classification (NHCMC) where the quadratic loss function is used. Experimental results on some benchmark datasets are reported to show the effectiveness of our method in terms of sparseness and classification accuracy.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种改进的非并行超平面多类分类器INHCMC。与二值分类的非并行支持向量机(NPSVM)一样,在多类分类的原始问题中采用ε-不敏感损失函数,以提高非并行超平面多类分类器(NHCMC)的稀疏性。在一些基准数据集上的实验结果表明,我们的方法在稀疏度和分类精度方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Nonparallel Hyperplanes Support Vector Machines for Multi-class Classification
In this paper, we present an improved nonparallel hyperplanes classifier for multi-class classification, termed as INHCMC. As in the nonparallel support vector machine (NPSVM) for binary classification, the ε-insensitive loss function is adopted in the primal problems of multi-class classification to improve the sparseness associated with the nonparallel hyperplanes classifier for multi-class classification (NHCMC) where the quadratic loss function is used. Experimental results on some benchmark datasets are reported to show the effectiveness of our method in terms of sparseness and classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信