低李密度奇偶校验码

P. Santini, Massimo Battaglioni, F. Chiaraluce, M. Baldi, Edoardo Persichetti
{"title":"低李密度奇偶校验码","authors":"P. Santini, Massimo Battaglioni, F. Chiaraluce, M. Baldi, Edoardo Persichetti","doi":"10.1109/ICC40277.2020.9148812","DOIUrl":null,"url":null,"abstract":"We introduce a new family of linear block codes over $\\mathbb{Z}_{q}$ that we name low-Lee-density parity-check (LLDPC) codes. These codes, which are embedded with the Lee metric, are characterized by a parity-check matrix whose rows and columns have low Lee weight. We propose general constructions of LLDPC codes and devise an efficient iterative decoding algorithm for them, with complexity that grows linearly with the code length. We assess the error rate performance of these codes through numerical simulations.","PeriodicalId":106560,"journal":{"name":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Low-Lee-Density Parity-Check Codes\",\"authors\":\"P. Santini, Massimo Battaglioni, F. Chiaraluce, M. Baldi, Edoardo Persichetti\",\"doi\":\"10.1109/ICC40277.2020.9148812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new family of linear block codes over $\\\\mathbb{Z}_{q}$ that we name low-Lee-density parity-check (LLDPC) codes. These codes, which are embedded with the Lee metric, are characterized by a parity-check matrix whose rows and columns have low Lee weight. We propose general constructions of LLDPC codes and devise an efficient iterative decoding algorithm for them, with complexity that grows linearly with the code length. We assess the error rate performance of these codes through numerical simulations.\",\"PeriodicalId\":106560,\"journal\":{\"name\":\"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC40277.2020.9148812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC40277.2020.9148812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们在$\mathbb{Z}_{q}$上引入了一组新的线性分组码,我们将其命名为低李密度奇偶校验(LLDPC)码。这些代码嵌入了李度量,其特征是一个奇偶校验矩阵,其行和列具有低李权重。我们提出了LLDPC码的一般结构,并设计了一种有效的迭代译码算法,其复杂度随码长线性增长。我们通过数值模拟来评估这些码的错误率性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Lee-Density Parity-Check Codes
We introduce a new family of linear block codes over $\mathbb{Z}_{q}$ that we name low-Lee-density parity-check (LLDPC) codes. These codes, which are embedded with the Lee metric, are characterized by a parity-check matrix whose rows and columns have low Lee weight. We propose general constructions of LLDPC codes and devise an efficient iterative decoding algorithm for them, with complexity that grows linearly with the code length. We assess the error rate performance of these codes through numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信