基于主题建模的货运供应商推理

Chi-hung Chen
{"title":"基于主题建模的货运供应商推理","authors":"Chi-hung Chen","doi":"10.1145/3336499.3338013","DOIUrl":null,"url":null,"abstract":"This research applies Latent Dirichlet Allocation on United States Automated Manifest System Bill of Lading data. We define a \"bag of word\" where each Harmonized tariff code represents a document, each shipper name be a token and count of shipments to be element of matrix. The result shows that topic model is able to classify some shippers of the same industries.","PeriodicalId":148424,"journal":{"name":"Proceedings of the 5th Workshop on Data Science for Macro-modeling with Financial and Economic Datasets","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shipment Supplier Inference Using Topic Modeling\",\"authors\":\"Chi-hung Chen\",\"doi\":\"10.1145/3336499.3338013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research applies Latent Dirichlet Allocation on United States Automated Manifest System Bill of Lading data. We define a \\\"bag of word\\\" where each Harmonized tariff code represents a document, each shipper name be a token and count of shipments to be element of matrix. The result shows that topic model is able to classify some shippers of the same industries.\",\"PeriodicalId\":148424,\"journal\":{\"name\":\"Proceedings of the 5th Workshop on Data Science for Macro-modeling with Financial and Economic Datasets\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th Workshop on Data Science for Macro-modeling with Financial and Economic Datasets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3336499.3338013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Workshop on Data Science for Macro-modeling with Financial and Economic Datasets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336499.3338013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究将潜在狄利克雷分配应用于美国自动舱单系统的提单数据。我们定义了一个“字袋”,其中每个协调税则号代表一个文件,每个托运人名称是一个标记,装运数量是矩阵的元素。结果表明,该主题模型能够对同一行业的部分托运人进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shipment Supplier Inference Using Topic Modeling
This research applies Latent Dirichlet Allocation on United States Automated Manifest System Bill of Lading data. We define a "bag of word" where each Harmonized tariff code represents a document, each shipper name be a token and count of shipments to be element of matrix. The result shows that topic model is able to classify some shippers of the same industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信