{"title":"人分析的推荐系统","authors":"Nan Wang, Evangelos Katsamakas","doi":"10.4018/ijbir.20210701oa04","DOIUrl":null,"url":null,"abstract":"Companies seek to leverage data and people analytics to maximize the business value of their talent. This article proposes a recommendation system for personalized workload assignment in the context of people analytics. The article describes the system, which follows a novel two-level hybrid architecture. We evaluate the system performance in a series of computational experiments and discuss future extensions. Overall, the proposed system could create significant business value as a decision support system that could help managers make better decisions. The article demonstrates how computational and machine learning approaches can complement humans in improving the performance of organizations.","PeriodicalId":404696,"journal":{"name":"Int. J. Bus. Intell. Res.","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Recommendation System for People Analytics\",\"authors\":\"Nan Wang, Evangelos Katsamakas\",\"doi\":\"10.4018/ijbir.20210701oa04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Companies seek to leverage data and people analytics to maximize the business value of their talent. This article proposes a recommendation system for personalized workload assignment in the context of people analytics. The article describes the system, which follows a novel two-level hybrid architecture. We evaluate the system performance in a series of computational experiments and discuss future extensions. Overall, the proposed system could create significant business value as a decision support system that could help managers make better decisions. The article demonstrates how computational and machine learning approaches can complement humans in improving the performance of organizations.\",\"PeriodicalId\":404696,\"journal\":{\"name\":\"Int. J. Bus. Intell. Res.\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bus. Intell. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijbir.20210701oa04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bus. Intell. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijbir.20210701oa04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Companies seek to leverage data and people analytics to maximize the business value of their talent. This article proposes a recommendation system for personalized workload assignment in the context of people analytics. The article describes the system, which follows a novel two-level hybrid architecture. We evaluate the system performance in a series of computational experiments and discuss future extensions. Overall, the proposed system could create significant business value as a decision support system that could help managers make better decisions. The article demonstrates how computational and machine learning approaches can complement humans in improving the performance of organizations.