多分类器决策融合提高黑色素瘤识别准确率

Maen Takruri, M. Rashad, H. Attia
{"title":"多分类器决策融合提高黑色素瘤识别准确率","authors":"Maen Takruri, M. Rashad, H. Attia","doi":"10.1109/ICEDSA.2016.7818536","DOIUrl":null,"url":null,"abstract":"This paper proposes an automated non-invasive multi-classifier system for skin cancer (melanoma) detection. The proposed system fuses the results obtained from three classification systems to enhance the melanoma detection rate. All of the classification systems use Support Vector Machine classifier. However, the image feature sets used in each classification system are different. The features sets used are Wavelets and Color features, Curvelets features and Grey Level Co-occurrence Matrices features. The output class labels or class probabilities of the three classification systems are combined using Majority Voting or Averaging Fusion to obtain enhanced classification rates. The dataset used include digital images for benign and malignant skin lesions. Experimental results show that the proposed multi-classifier fusion method outperforms standalone Skin Lesion classification systems in terms of recognition accuracy. Consequently, this can increase the chances of non-invasive melanoma detection from digital images.","PeriodicalId":247318,"journal":{"name":"2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Multi-classifier decision fusion for enhancing melanoma recognition accuracy\",\"authors\":\"Maen Takruri, M. Rashad, H. Attia\",\"doi\":\"10.1109/ICEDSA.2016.7818536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an automated non-invasive multi-classifier system for skin cancer (melanoma) detection. The proposed system fuses the results obtained from three classification systems to enhance the melanoma detection rate. All of the classification systems use Support Vector Machine classifier. However, the image feature sets used in each classification system are different. The features sets used are Wavelets and Color features, Curvelets features and Grey Level Co-occurrence Matrices features. The output class labels or class probabilities of the three classification systems are combined using Majority Voting or Averaging Fusion to obtain enhanced classification rates. The dataset used include digital images for benign and malignant skin lesions. Experimental results show that the proposed multi-classifier fusion method outperforms standalone Skin Lesion classification systems in terms of recognition accuracy. Consequently, this can increase the chances of non-invasive melanoma detection from digital images.\",\"PeriodicalId\":247318,\"journal\":{\"name\":\"2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEDSA.2016.7818536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEDSA.2016.7818536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种用于皮肤癌(黑色素瘤)检测的自动无创多分类器系统。该系统融合了三种分类系统的结果,以提高黑色素瘤的检出率。所有的分类系统都使用支持向量机分类器。然而,每个分类系统中使用的图像特征集是不同的。使用的特征集有小波和颜色特征、曲波特征和灰度共生矩阵特征。三种分类系统的输出分类标签或分类概率使用多数投票或平均融合进行组合,以获得增强的分类率。使用的数据集包括良性和恶性皮肤病变的数字图像。实验结果表明,所提出的多分类器融合方法在识别精度上优于单独的皮肤病变分类系统。因此,这可以增加从数字图像中检测非侵入性黑色素瘤的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-classifier decision fusion for enhancing melanoma recognition accuracy
This paper proposes an automated non-invasive multi-classifier system for skin cancer (melanoma) detection. The proposed system fuses the results obtained from three classification systems to enhance the melanoma detection rate. All of the classification systems use Support Vector Machine classifier. However, the image feature sets used in each classification system are different. The features sets used are Wavelets and Color features, Curvelets features and Grey Level Co-occurrence Matrices features. The output class labels or class probabilities of the three classification systems are combined using Majority Voting or Averaging Fusion to obtain enhanced classification rates. The dataset used include digital images for benign and malignant skin lesions. Experimental results show that the proposed multi-classifier fusion method outperforms standalone Skin Lesion classification systems in terms of recognition accuracy. Consequently, this can increase the chances of non-invasive melanoma detection from digital images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信