{"title":"格林函数和多谐算子的正确约束","authors":"B. Koshanov","doi":"10.26577/JMMCS.2021.V109.I1.03","DOIUrl":null,"url":null,"abstract":"In this paper, for completeness of presentation, we give explicitly the Green's functions for the classical problems - Dirichlet, Neumann, and Robin for the Poisson equation in a multidimensional unit ball. There are various ways of constructing the Green's function of the Dirichlet problem for the Poisson equation. For many types of areas, it is built explicitly. Recently, there has been renewed interest in the explicit construction of Green's functions for classical problems. The Green's function of the Dirichlet problem for a polyharmonic equation in a multidimensional ball is constructed in an explicit form, and for the Neumann problem the construction of the Green's function remains an open problem. The paper gives a constructive way of constructing the Green's function of Dirichlet problems for a polyharmonic equation in a multidimensional ball. Finding general well-posed boundary value problems for differential equations is always an urgent problem. In this paper, we briefly outline the theory of restriction and extension of operators and describe well-posed boundary value problems for a polyharmonic operator.","PeriodicalId":423127,"journal":{"name":"Journal of Mathematics, Mechanics and Computer Science","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GREEN'S FUNCTIONS AND CORRECT RESTRICTIONS OF THE POLYHARMONIC OPERATOR\",\"authors\":\"B. Koshanov\",\"doi\":\"10.26577/JMMCS.2021.V109.I1.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, for completeness of presentation, we give explicitly the Green's functions for the classical problems - Dirichlet, Neumann, and Robin for the Poisson equation in a multidimensional unit ball. There are various ways of constructing the Green's function of the Dirichlet problem for the Poisson equation. For many types of areas, it is built explicitly. Recently, there has been renewed interest in the explicit construction of Green's functions for classical problems. The Green's function of the Dirichlet problem for a polyharmonic equation in a multidimensional ball is constructed in an explicit form, and for the Neumann problem the construction of the Green's function remains an open problem. The paper gives a constructive way of constructing the Green's function of Dirichlet problems for a polyharmonic equation in a multidimensional ball. Finding general well-posed boundary value problems for differential equations is always an urgent problem. In this paper, we briefly outline the theory of restriction and extension of operators and describe well-posed boundary value problems for a polyharmonic operator.\",\"PeriodicalId\":423127,\"journal\":{\"name\":\"Journal of Mathematics, Mechanics and Computer Science\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics, Mechanics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26577/JMMCS.2021.V109.I1.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics, Mechanics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26577/JMMCS.2021.V109.I1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GREEN'S FUNCTIONS AND CORRECT RESTRICTIONS OF THE POLYHARMONIC OPERATOR
In this paper, for completeness of presentation, we give explicitly the Green's functions for the classical problems - Dirichlet, Neumann, and Robin for the Poisson equation in a multidimensional unit ball. There are various ways of constructing the Green's function of the Dirichlet problem for the Poisson equation. For many types of areas, it is built explicitly. Recently, there has been renewed interest in the explicit construction of Green's functions for classical problems. The Green's function of the Dirichlet problem for a polyharmonic equation in a multidimensional ball is constructed in an explicit form, and for the Neumann problem the construction of the Green's function remains an open problem. The paper gives a constructive way of constructing the Green's function of Dirichlet problems for a polyharmonic equation in a multidimensional ball. Finding general well-posed boundary value problems for differential equations is always an urgent problem. In this paper, we briefly outline the theory of restriction and extension of operators and describe well-posed boundary value problems for a polyharmonic operator.