{"title":"MEIS3在A549肺上皮细胞中被脱氧雪腐烯醇抑制,这种抑制有助于产生有害作用。","authors":"Takahito Toyotome, Hiroki Takahashi, K. Kamei","doi":"10.2131/jts.41.25","DOIUrl":null,"url":null,"abstract":"Deoxynivalenol (DON) is an important Fusarium toxin of concern for food safety. The inhalation of powder contaminated with DON is possible and may cause lung toxicity. In this study, we analyzed the gene expression profile of A549 cells treated for 24 hr with 0.2 µg/mL DON by microarray analysis. In total, 16 genes and 5 noncoding RNAs were significantly affected by DON treatment. The repression of B3GALT4, MEIS3, AK7, SEMA3A, KCNMB4, and SCARA5 was confirmed by quantitative PCR. We investigated the DON toxicity on A549 cells that exogenously expressed these 6 genes. The result indicated that A549 cells that transiently expressed MEIS3 were tolerant to the deleterious effects of DON. Our data show that DON affected the expression of genes with various functions, and suggest that the repression of MEIS3 plays roles in the deleterious effect of DON in A549 lung epithelial cells.","PeriodicalId":231048,"journal":{"name":"The Journal of toxicological sciences","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MEIS3 is repressed in A549 lung epithelial cells by deoxynivalenol and the repression contributes to the deleterious effect.\",\"authors\":\"Takahito Toyotome, Hiroki Takahashi, K. Kamei\",\"doi\":\"10.2131/jts.41.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deoxynivalenol (DON) is an important Fusarium toxin of concern for food safety. The inhalation of powder contaminated with DON is possible and may cause lung toxicity. In this study, we analyzed the gene expression profile of A549 cells treated for 24 hr with 0.2 µg/mL DON by microarray analysis. In total, 16 genes and 5 noncoding RNAs were significantly affected by DON treatment. The repression of B3GALT4, MEIS3, AK7, SEMA3A, KCNMB4, and SCARA5 was confirmed by quantitative PCR. We investigated the DON toxicity on A549 cells that exogenously expressed these 6 genes. The result indicated that A549 cells that transiently expressed MEIS3 were tolerant to the deleterious effects of DON. Our data show that DON affected the expression of genes with various functions, and suggest that the repression of MEIS3 plays roles in the deleterious effect of DON in A549 lung epithelial cells.\",\"PeriodicalId\":231048,\"journal\":{\"name\":\"The Journal of toxicological sciences\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of toxicological sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2131/jts.41.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of toxicological sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2131/jts.41.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MEIS3 is repressed in A549 lung epithelial cells by deoxynivalenol and the repression contributes to the deleterious effect.
Deoxynivalenol (DON) is an important Fusarium toxin of concern for food safety. The inhalation of powder contaminated with DON is possible and may cause lung toxicity. In this study, we analyzed the gene expression profile of A549 cells treated for 24 hr with 0.2 µg/mL DON by microarray analysis. In total, 16 genes and 5 noncoding RNAs were significantly affected by DON treatment. The repression of B3GALT4, MEIS3, AK7, SEMA3A, KCNMB4, and SCARA5 was confirmed by quantitative PCR. We investigated the DON toxicity on A549 cells that exogenously expressed these 6 genes. The result indicated that A549 cells that transiently expressed MEIS3 were tolerant to the deleterious effects of DON. Our data show that DON affected the expression of genes with various functions, and suggest that the repression of MEIS3 plays roles in the deleterious effect of DON in A549 lung epithelial cells.