{"title":"循环q元图像的编码和突发校正","authors":"W. Wafo, J. Wolfmann","doi":"10.1109/ISIT.1994.394921","DOIUrl":null,"url":null,"abstract":"In the case where the cyclic code C is determined by a constancy-clique code described in Jensen's (see IEEE Trans. Inform. Theory, vol.38, p.950-959, 1992) theorem, we are able to find a lower bound for the minimum weight of C. By using the previous proposition we deduce lower bounds for the burst correction capacity of cyclic codes with composite lengths.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclic q-ary images of codes and burst correction\",\"authors\":\"W. Wafo, J. Wolfmann\",\"doi\":\"10.1109/ISIT.1994.394921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the case where the cyclic code C is determined by a constancy-clique code described in Jensen's (see IEEE Trans. Inform. Theory, vol.38, p.950-959, 1992) theorem, we are able to find a lower bound for the minimum weight of C. By using the previous proposition we deduce lower bounds for the burst correction capacity of cyclic codes with composite lengths.<<ETX>>\",\"PeriodicalId\":331390,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"volume\":\"165 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.1994.394921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.394921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the case where the cyclic code C is determined by a constancy-clique code described in Jensen's (see IEEE Trans. Inform. Theory, vol.38, p.950-959, 1992) theorem, we are able to find a lower bound for the minimum weight of C. By using the previous proposition we deduce lower bounds for the burst correction capacity of cyclic codes with composite lengths.<>