简要公告:使用高斯近似更快的模板计算

Zafar Ahmad, R. Chowdhury, Rathish Das, P. Ganapathi, Aaron Gregory, Yimin Zhu
{"title":"简要公告:使用高斯近似更快的模板计算","authors":"Zafar Ahmad, R. Chowdhury, Rathish Das, P. Ganapathi, Aaron Gregory, Yimin Zhu","doi":"10.1145/3490148.3538558","DOIUrl":null,"url":null,"abstract":"Stencil computations are widely used to simulate the change of state of physical systems. The current best algorithm for performing aperiodic linear stencil computations on a d (≥ 1)-dimensional grid of size N for T timesteps does Θ(TN1-1/d+N Log N) work. We introduce novel techniques based on random walks and Gaussian approximations for an asymptotic improvement of this work bound for a class of linear stencils. We also improve the span (i.e., parallel running time on an unbounded number of processors) asymptotically from the current state of the art.","PeriodicalId":112865,"journal":{"name":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Brief Announcement: Faster Stencil Computations using Gaussian Approximations\",\"authors\":\"Zafar Ahmad, R. Chowdhury, Rathish Das, P. Ganapathi, Aaron Gregory, Yimin Zhu\",\"doi\":\"10.1145/3490148.3538558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stencil computations are widely used to simulate the change of state of physical systems. The current best algorithm for performing aperiodic linear stencil computations on a d (≥ 1)-dimensional grid of size N for T timesteps does Θ(TN1-1/d+N Log N) work. We introduce novel techniques based on random walks and Gaussian approximations for an asymptotic improvement of this work bound for a class of linear stencils. We also improve the span (i.e., parallel running time on an unbounded number of processors) asymptotically from the current state of the art.\",\"PeriodicalId\":112865,\"journal\":{\"name\":\"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3490148.3538558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3490148.3538558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

模板计算被广泛用于模拟物理系统的状态变化。目前在d(≥1)维、大小为N、时间步长为T的网格上执行非周期线性模板计算的最佳算法是Θ(TN1-1/d+N Log N)。我们引入了基于随机漫步和高斯近似的新技术,对一类线性模板的工作界进行了渐近改进。我们还从目前的技术状态渐近地改进了跨度(即在无限数量的处理器上并行运行时间)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brief Announcement: Faster Stencil Computations using Gaussian Approximations
Stencil computations are widely used to simulate the change of state of physical systems. The current best algorithm for performing aperiodic linear stencil computations on a d (≥ 1)-dimensional grid of size N for T timesteps does Θ(TN1-1/d+N Log N) work. We introduce novel techniques based on random walks and Gaussian approximations for an asymptotic improvement of this work bound for a class of linear stencils. We also improve the span (i.e., parallel running time on an unbounded number of processors) asymptotically from the current state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信