风电机组转子边缘振动动力学的LPV子空间辨识

P. Gebraad, J. Wingerden, P. Fleming, A. Wright
{"title":"风电机组转子边缘振动动力学的LPV子空间辨识","authors":"P. Gebraad, J. Wingerden, P. Fleming, A. Wright","doi":"10.1109/CCA.2011.6044488","DOIUrl":null,"url":null,"abstract":"In this paper we apply a state-of-the-art algorithm for subspace identification of linear parameter-varying (LPV) systems to identify the coupled dynamics of the drive-train and the edgewise bending motion of the rotor blades of three-bladed wind turbines. These dynamics are varying with the rotor speed. The identification algorithm uses a factorization which makes it possible to form predictors based on past inputs, outputs, and the known rotor speed. The predictors contain the LPV equivalent of the Markov parameters. Using the predictors, ideas from Predictor Based Subspace IDentification (PBSID) were developed to estimate the state sequence from which the LPV system matrices can be constructed. The algorithm was applied not only to synthetic data generated by a computer simulation of a reference wind turbine, but also to data measured from the CART3 research wind turbine at the National Wind Technology Center of the National Renewable Energy Laboratory (NREL). This paper demonstrates that the linear time-varying behavior of the aeroelastic dynamics of the wind turbine rotor can be captured in an LPV model identified with measured input-output data.","PeriodicalId":208713,"journal":{"name":"2011 IEEE International Conference on Control Applications (CCA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"LPV subspace identification of the edgewise vibrational dynamics of a wind turbine rotor\",\"authors\":\"P. Gebraad, J. Wingerden, P. Fleming, A. Wright\",\"doi\":\"10.1109/CCA.2011.6044488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we apply a state-of-the-art algorithm for subspace identification of linear parameter-varying (LPV) systems to identify the coupled dynamics of the drive-train and the edgewise bending motion of the rotor blades of three-bladed wind turbines. These dynamics are varying with the rotor speed. The identification algorithm uses a factorization which makes it possible to form predictors based on past inputs, outputs, and the known rotor speed. The predictors contain the LPV equivalent of the Markov parameters. Using the predictors, ideas from Predictor Based Subspace IDentification (PBSID) were developed to estimate the state sequence from which the LPV system matrices can be constructed. The algorithm was applied not only to synthetic data generated by a computer simulation of a reference wind turbine, but also to data measured from the CART3 research wind turbine at the National Wind Technology Center of the National Renewable Energy Laboratory (NREL). This paper demonstrates that the linear time-varying behavior of the aeroelastic dynamics of the wind turbine rotor can be captured in an LPV model identified with measured input-output data.\",\"PeriodicalId\":208713,\"journal\":{\"name\":\"2011 IEEE International Conference on Control Applications (CCA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2011.6044488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2011.6044488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文应用线性变参数系统子空间辨识的最新算法来辨识三叶风力机的传动系与转子叶片边缘弯曲运动的耦合动力学。这些动力学随转子转速而变化。识别算法使用因式分解,使得可以根据过去的输入,输出和已知的转子转速形成预测器。预测器包含等价于马尔可夫参数的LPV。利用预测器,提出了基于预测器的子空间识别(PBSID)的思想来估计状态序列,从而构造LPV系统矩阵。该算法不仅应用于参考风力机的计算机模拟生成的合成数据,还应用于国家可再生能源实验室(NREL)国家风能技术中心CART3研究风力机的测量数据。本文证明了风电机组转子气动弹性动力学的线性时变行为可以用实测输入输出数据识别的LPV模型来捕获。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LPV subspace identification of the edgewise vibrational dynamics of a wind turbine rotor
In this paper we apply a state-of-the-art algorithm for subspace identification of linear parameter-varying (LPV) systems to identify the coupled dynamics of the drive-train and the edgewise bending motion of the rotor blades of three-bladed wind turbines. These dynamics are varying with the rotor speed. The identification algorithm uses a factorization which makes it possible to form predictors based on past inputs, outputs, and the known rotor speed. The predictors contain the LPV equivalent of the Markov parameters. Using the predictors, ideas from Predictor Based Subspace IDentification (PBSID) were developed to estimate the state sequence from which the LPV system matrices can be constructed. The algorithm was applied not only to synthetic data generated by a computer simulation of a reference wind turbine, but also to data measured from the CART3 research wind turbine at the National Wind Technology Center of the National Renewable Energy Laboratory (NREL). This paper demonstrates that the linear time-varying behavior of the aeroelastic dynamics of the wind turbine rotor can be captured in an LPV model identified with measured input-output data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信