{"title":"WELCOMF","authors":"Arijit Nath, H. Kapoor","doi":"10.1145/3370748.3406559","DOIUrl":null,"url":null,"abstract":"Emerging Non-Volatile memories such as Phase Change Memory (PCM) and Resistive RAM are projected as potential replacements of the traditional DRAM-based main memories. However, limited write endurance and high write energy limit their chances of adoption as a mainstream main memory standard. In this paper, we propose a word-level compression scheme called COMF to reduce bitflips in PCMs by removing the most repeated words from the cache lines before writing into memory. Later, we also propose an intra-line wear leveing technique called WELCOMF that extends COMF to improve lifetime. Experimental results show that the proposed technique improves lifetime by 75% and, reduce bit flips and energy by 45% and 46% respectively over baseline.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"15 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"WELCOMF\",\"authors\":\"Arijit Nath, H. Kapoor\",\"doi\":\"10.1145/3370748.3406559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging Non-Volatile memories such as Phase Change Memory (PCM) and Resistive RAM are projected as potential replacements of the traditional DRAM-based main memories. However, limited write endurance and high write energy limit their chances of adoption as a mainstream main memory standard. In this paper, we propose a word-level compression scheme called COMF to reduce bitflips in PCMs by removing the most repeated words from the cache lines before writing into memory. Later, we also propose an intra-line wear leveing technique called WELCOMF that extends COMF to improve lifetime. Experimental results show that the proposed technique improves lifetime by 75% and, reduce bit flips and energy by 45% and 46% respectively over baseline.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"15 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3370748.3406559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3406559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Emerging Non-Volatile memories such as Phase Change Memory (PCM) and Resistive RAM are projected as potential replacements of the traditional DRAM-based main memories. However, limited write endurance and high write energy limit their chances of adoption as a mainstream main memory standard. In this paper, we propose a word-level compression scheme called COMF to reduce bitflips in PCMs by removing the most repeated words from the cache lines before writing into memory. Later, we also propose an intra-line wear leveing technique called WELCOMF that extends COMF to improve lifetime. Experimental results show that the proposed technique improves lifetime by 75% and, reduce bit flips and energy by 45% and 46% respectively over baseline.