Patrizio Angelini, M. Bekos, G. D. Lozzo, Martin Gronemann, Fabrizio Montecchiani, Alessandra Tappini
{"title":"识别有界树宽的地图图","authors":"Patrizio Angelini, M. Bekos, G. D. Lozzo, Martin Gronemann, Fabrizio Montecchiani, Alessandra Tappini","doi":"10.4230/LIPIcs.SWAT.2022.8","DOIUrl":null,"url":null,"abstract":"A map is a partition of the sphere into interior-disjoint regions homeomorphic to closed disks. Some regions are labeled as nations, while the remaining ones are labeled as holes. A map in which at most k nations touch at the same point is a k-map, while it is hole-free if it contains no holes. A graph is a map graph if there is a bijection between its vertices and the nations of a map, such that two nations touch if and only the corresponding vertices are connected by an edge. We present a fixed-parameter tractable algorithm for recognizing map graphs parameterized by treewidth. Its time complexity is linear in the size of the graph. It reports a certificate in the form of a so-called witness, if the input is a yes-instance. Our algorithmic framework is general enough to test, for any k, if the input graph admits a k-map or a hole-free k-map.","PeriodicalId":447445,"journal":{"name":"Scandinavian Workshop on Algorithm Theory","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognizing Map Graphs of Bounded Treewidth\",\"authors\":\"Patrizio Angelini, M. Bekos, G. D. Lozzo, Martin Gronemann, Fabrizio Montecchiani, Alessandra Tappini\",\"doi\":\"10.4230/LIPIcs.SWAT.2022.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A map is a partition of the sphere into interior-disjoint regions homeomorphic to closed disks. Some regions are labeled as nations, while the remaining ones are labeled as holes. A map in which at most k nations touch at the same point is a k-map, while it is hole-free if it contains no holes. A graph is a map graph if there is a bijection between its vertices and the nations of a map, such that two nations touch if and only the corresponding vertices are connected by an edge. We present a fixed-parameter tractable algorithm for recognizing map graphs parameterized by treewidth. Its time complexity is linear in the size of the graph. It reports a certificate in the form of a so-called witness, if the input is a yes-instance. Our algorithmic framework is general enough to test, for any k, if the input graph admits a k-map or a hole-free k-map.\",\"PeriodicalId\":447445,\"journal\":{\"name\":\"Scandinavian Workshop on Algorithm Theory\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Workshop on Algorithm Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.SWAT.2022.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Workshop on Algorithm Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SWAT.2022.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A map is a partition of the sphere into interior-disjoint regions homeomorphic to closed disks. Some regions are labeled as nations, while the remaining ones are labeled as holes. A map in which at most k nations touch at the same point is a k-map, while it is hole-free if it contains no holes. A graph is a map graph if there is a bijection between its vertices and the nations of a map, such that two nations touch if and only the corresponding vertices are connected by an edge. We present a fixed-parameter tractable algorithm for recognizing map graphs parameterized by treewidth. Its time complexity is linear in the size of the graph. It reports a certificate in the form of a so-called witness, if the input is a yes-instance. Our algorithmic framework is general enough to test, for any k, if the input graph admits a k-map or a hole-free k-map.