网络简化与最小的连通性损失

Fang Zhou, S. Mahler, Hannu (TT) Toivonen
{"title":"网络简化与最小的连通性损失","authors":"Fang Zhou, S. Mahler, Hannu (TT) Toivonen","doi":"10.1109/ICDM.2010.133","DOIUrl":null,"url":null,"abstract":"We propose a novel problem to simplify weighted graphs by pruning least important edges from them. Simplified graphs can be used to improve visualization of a network, to extract its main structure, or as a pre-processing step for other data mining algorithms. We define a graph connectivity function based on the best paths between all pairs of nodes. Given the number of edges to be pruned, the problem is then to select a subset of edges that best maintains the overall graph connectivity. Our model is applicable to a wide range of settings, including probabilistic graphs, flow graphs and distance graphs, since the path quality function that is used to find best paths can be defined by the user. We analyze the problem, and give lower bounds for the effect of individual edge removal in the case where the path quality function has a natural recursive property. We then propose a range of algorithms and report on experimental results on real networks derived from public biological databases. The results show that a large fraction of edges can be removed quite fast and with minimal effect on the overall graph connectivity. A rough semantic analysis of the removed edges indicates that few important edges were removed, and that the proposed approach could be a valuable tool in aiding users to view or explore weighted graphs.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Network Simplification with Minimal Loss of Connectivity\",\"authors\":\"Fang Zhou, S. Mahler, Hannu (TT) Toivonen\",\"doi\":\"10.1109/ICDM.2010.133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel problem to simplify weighted graphs by pruning least important edges from them. Simplified graphs can be used to improve visualization of a network, to extract its main structure, or as a pre-processing step for other data mining algorithms. We define a graph connectivity function based on the best paths between all pairs of nodes. Given the number of edges to be pruned, the problem is then to select a subset of edges that best maintains the overall graph connectivity. Our model is applicable to a wide range of settings, including probabilistic graphs, flow graphs and distance graphs, since the path quality function that is used to find best paths can be defined by the user. We analyze the problem, and give lower bounds for the effect of individual edge removal in the case where the path quality function has a natural recursive property. We then propose a range of algorithms and report on experimental results on real networks derived from public biological databases. The results show that a large fraction of edges can be removed quite fast and with minimal effect on the overall graph connectivity. A rough semantic analysis of the removed edges indicates that few important edges were removed, and that the proposed approach could be a valuable tool in aiding users to view or explore weighted graphs.\",\"PeriodicalId\":294061,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2010.133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

我们提出了一个新的问题来简化加权图通过修剪最不重要的边。简化图可用于提高网络的可视化,提取其主要结构,或作为其他数据挖掘算法的预处理步骤。我们定义了一个基于所有节点对之间最佳路径的图连通性函数。给定要修剪的边的数量,接下来的问题是选择一个最能维护整个图连通性的边子集。我们的模型适用于广泛的设置,包括概率图、流图和距离图,因为用于寻找最佳路径的路径质量函数可以由用户定义。我们分析了这个问题,并给出了在路径质量函数具有自然递归性质的情况下单个边缘去除效果的下界。然后,我们提出了一系列算法,并报告了来自公共生物数据库的真实网络的实验结果。结果表明,可以快速去除大部分边缘,并且对整个图的连通性影响最小。对被删除的边缘进行粗略的语义分析表明,很少有重要的边缘被删除,并且所提出的方法可以成为帮助用户查看或探索加权图的有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network Simplification with Minimal Loss of Connectivity
We propose a novel problem to simplify weighted graphs by pruning least important edges from them. Simplified graphs can be used to improve visualization of a network, to extract its main structure, or as a pre-processing step for other data mining algorithms. We define a graph connectivity function based on the best paths between all pairs of nodes. Given the number of edges to be pruned, the problem is then to select a subset of edges that best maintains the overall graph connectivity. Our model is applicable to a wide range of settings, including probabilistic graphs, flow graphs and distance graphs, since the path quality function that is used to find best paths can be defined by the user. We analyze the problem, and give lower bounds for the effect of individual edge removal in the case where the path quality function has a natural recursive property. We then propose a range of algorithms and report on experimental results on real networks derived from public biological databases. The results show that a large fraction of edges can be removed quite fast and with minimal effect on the overall graph connectivity. A rough semantic analysis of the removed edges indicates that few important edges were removed, and that the proposed approach could be a valuable tool in aiding users to view or explore weighted graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信