基于角线预测的水箱检测与定位

Hao Chen, Chongyang Zhang, Yan Luo, Bingkun Zhao, Jiahao Bao
{"title":"基于角线预测的水箱检测与定位","authors":"Hao Chen, Chongyang Zhang, Yan Luo, Bingkun Zhao, Jiahao Bao","doi":"10.1109/VCIP47243.2019.8965977","DOIUrl":null,"url":null,"abstract":"Water tanks on the roof of buildings require regular labor-costing inspection, and object detection can be used to automate the task. Current detection frameworks have several drawbacks when they are applied: (1) The output horizontal rectangular boxes cannot provide arbitrary quadrilateral detection representations; (2) False positive results may easily appear when key-point based models are used. In this paper, we propose a novel detection framework: Corner-Line-Prediction, which generates tight quadrilateral detection results of the tank blocks. Our model is built on key point detection network to detect corner points precisely. And an original line predictor is integrated to recognize unique tank edges, such that numerous false positive detections can be suppressed. Experimental results show that our Corner-Line-Prediction (CLP) framework outperforms state- of-the-art detection algorithms in average-precision (AP) and produces better localization results, compared with mainstream general detection models.","PeriodicalId":388109,"journal":{"name":"2019 IEEE Visual Communications and Image Processing (VCIP)","volume":"44 19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comer-Line-Prediction based Water-tank Detection and Localization\",\"authors\":\"Hao Chen, Chongyang Zhang, Yan Luo, Bingkun Zhao, Jiahao Bao\",\"doi\":\"10.1109/VCIP47243.2019.8965977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water tanks on the roof of buildings require regular labor-costing inspection, and object detection can be used to automate the task. Current detection frameworks have several drawbacks when they are applied: (1) The output horizontal rectangular boxes cannot provide arbitrary quadrilateral detection representations; (2) False positive results may easily appear when key-point based models are used. In this paper, we propose a novel detection framework: Corner-Line-Prediction, which generates tight quadrilateral detection results of the tank blocks. Our model is built on key point detection network to detect corner points precisely. And an original line predictor is integrated to recognize unique tank edges, such that numerous false positive detections can be suppressed. Experimental results show that our Corner-Line-Prediction (CLP) framework outperforms state- of-the-art detection algorithms in average-precision (AP) and produces better localization results, compared with mainstream general detection models.\",\"PeriodicalId\":388109,\"journal\":{\"name\":\"2019 IEEE Visual Communications and Image Processing (VCIP)\",\"volume\":\"44 19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP47243.2019.8965977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP47243.2019.8965977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建筑物屋顶上的水箱需要定期进行人工成本检查,而物体检测可以用来自动化这项任务。当前的检测框架在应用时存在以下几个缺点:(1)输出水平矩形框不能提供任意四边形检测表示;(2)使用基于关键点的模型容易出现假阳性结果。在本文中,我们提出了一种新的检测框架:角线预测(Corner-Line-Prediction),该框架可以生成罐块的紧密四边形检测结果。我们的模型是建立在关键点检测网络上,精确检测拐角点。并且集成了原始的线预测器来识别独特的坦克边缘,从而可以抑制许多误报检测。实验结果表明,与主流的一般检测模型相比,我们的角线预测(CLP)框架在平均精度(AP)方面优于最先进的检测算法,并产生更好的定位结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comer-Line-Prediction based Water-tank Detection and Localization
Water tanks on the roof of buildings require regular labor-costing inspection, and object detection can be used to automate the task. Current detection frameworks have several drawbacks when they are applied: (1) The output horizontal rectangular boxes cannot provide arbitrary quadrilateral detection representations; (2) False positive results may easily appear when key-point based models are used. In this paper, we propose a novel detection framework: Corner-Line-Prediction, which generates tight quadrilateral detection results of the tank blocks. Our model is built on key point detection network to detect corner points precisely. And an original line predictor is integrated to recognize unique tank edges, such that numerous false positive detections can be suppressed. Experimental results show that our Corner-Line-Prediction (CLP) framework outperforms state- of-the-art detection algorithms in average-precision (AP) and produces better localization results, compared with mainstream general detection models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信