多维图像相位问题的性质和意义

R. Millane
{"title":"多维图像相位问题的性质和意义","authors":"R. Millane","doi":"10.1364/srs.1995.rwd4","DOIUrl":null,"url":null,"abstract":"Phase retrieval is concerned with recovery of an image from measurements of the amplitude of its Fourier transform [1]. It is of considerable practical importance in areas such as microscopy, ultrasonic imaging, astronomy, and crystallography. There are a number of applications, such as in x-ray crystallography, electron microscopy, ultrasonic imaging, and geophysical imaging, where the image to be reconstructed is three-dimensional. Uniqueness properties of phase problems in higher dimensions are examined, and implications in a number of applications of x-ray crystallography are described.","PeriodicalId":184407,"journal":{"name":"Signal Recovery and Synthesis","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties and Implications of Phase Problems for Multidimensional Images\",\"authors\":\"R. Millane\",\"doi\":\"10.1364/srs.1995.rwd4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase retrieval is concerned with recovery of an image from measurements of the amplitude of its Fourier transform [1]. It is of considerable practical importance in areas such as microscopy, ultrasonic imaging, astronomy, and crystallography. There are a number of applications, such as in x-ray crystallography, electron microscopy, ultrasonic imaging, and geophysical imaging, where the image to be reconstructed is three-dimensional. Uniqueness properties of phase problems in higher dimensions are examined, and implications in a number of applications of x-ray crystallography are described.\",\"PeriodicalId\":184407,\"journal\":{\"name\":\"Signal Recovery and Synthesis\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Recovery and Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/srs.1995.rwd4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Recovery and Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1995.rwd4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相位恢复涉及到从测量图像的傅里叶变换的幅度中恢复图像[1]。它在显微镜、超声成像、天文学和晶体学等领域具有相当重要的实际意义。有许多应用,如x射线晶体学、电子显微镜、超声成像和地球物理成像,其中重建的图像是三维的。研究了高维相问题的唯一性,并描述了x射线晶体学在许多应用中的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties and Implications of Phase Problems for Multidimensional Images
Phase retrieval is concerned with recovery of an image from measurements of the amplitude of its Fourier transform [1]. It is of considerable practical importance in areas such as microscopy, ultrasonic imaging, astronomy, and crystallography. There are a number of applications, such as in x-ray crystallography, electron microscopy, ultrasonic imaging, and geophysical imaging, where the image to be reconstructed is three-dimensional. Uniqueness properties of phase problems in higher dimensions are examined, and implications in a number of applications of x-ray crystallography are described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信