利用多语说话者的声学模型进行声学模型合并,实现语音自动识别

T. Tan, L. Besacier, B. Lecouteux
{"title":"利用多语说话者的声学模型进行声学模型合并,实现语音自动识别","authors":"T. Tan, L. Besacier, B. Lecouteux","doi":"10.1109/IALP.2014.6973492","DOIUrl":null,"url":null,"abstract":"Many studies have explored on the usage of existing multilingual speech corpora to build an acoustic model for a target language. These works on multilingual acoustic modeling often use multilingual acoustic models to create an initial model. This initial model created is often suboptimal in decoding speech of the target language. Some speech of the target language is then used to adapt and improve the initial model. In this paper however, we investigate multilingual acoustic modeling in enhancing an acoustic model of the target language for automatic speech recognition system. The proposed approach employs context dependent acoustic model merging of a source language to adapt acoustic model of a target language. The source and target language speech are spoken by speakers from the same country. Our experiments on Malay and English automatic speech recognition shows relative improvement in WER from 2% to about 10% when multilingual acoustic model was employed.","PeriodicalId":117334,"journal":{"name":"2014 International Conference on Asian Language Processing (IALP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Acoustic model merging using acoustic models from multilingual speakers for automatic speech recognition\",\"authors\":\"T. Tan, L. Besacier, B. Lecouteux\",\"doi\":\"10.1109/IALP.2014.6973492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many studies have explored on the usage of existing multilingual speech corpora to build an acoustic model for a target language. These works on multilingual acoustic modeling often use multilingual acoustic models to create an initial model. This initial model created is often suboptimal in decoding speech of the target language. Some speech of the target language is then used to adapt and improve the initial model. In this paper however, we investigate multilingual acoustic modeling in enhancing an acoustic model of the target language for automatic speech recognition system. The proposed approach employs context dependent acoustic model merging of a source language to adapt acoustic model of a target language. The source and target language speech are spoken by speakers from the same country. Our experiments on Malay and English automatic speech recognition shows relative improvement in WER from 2% to about 10% when multilingual acoustic model was employed.\",\"PeriodicalId\":117334,\"journal\":{\"name\":\"2014 International Conference on Asian Language Processing (IALP)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2014.6973492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2014.6973492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

许多研究都在探索利用现有的多语言语料库来建立目标语言的声学模型。这些关于多语言声学建模的工作通常使用多语言声学模型来创建初始模型。这种初始模型在解码目标语言语音时往往不是最优的。然后使用目标语言的一些语音来适应和改进初始模型。然而,在本文中,我们研究了多语言声学建模,以增强自动语音识别系统中目标语言的声学模型。该方法采用上下文相关的源语言声学模型合并来适应目标语言的声学模型。源语和目的语是由同一国家的说话者说的。我们对马来语和英语自动语音识别的实验表明,采用多语言声学模型时,识别率从2%提高到10%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acoustic model merging using acoustic models from multilingual speakers for automatic speech recognition
Many studies have explored on the usage of existing multilingual speech corpora to build an acoustic model for a target language. These works on multilingual acoustic modeling often use multilingual acoustic models to create an initial model. This initial model created is often suboptimal in decoding speech of the target language. Some speech of the target language is then used to adapt and improve the initial model. In this paper however, we investigate multilingual acoustic modeling in enhancing an acoustic model of the target language for automatic speech recognition system. The proposed approach employs context dependent acoustic model merging of a source language to adapt acoustic model of a target language. The source and target language speech are spoken by speakers from the same country. Our experiments on Malay and English automatic speech recognition shows relative improvement in WER from 2% to about 10% when multilingual acoustic model was employed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信