平面波衍射由直角楔形包覆薄双各向同性层

S.G. Vashtalov, O. Dotsenko
{"title":"平面波衍射由直角楔形包覆薄双各向同性层","authors":"S.G. Vashtalov, O. Dotsenko","doi":"10.1109/MMET.2000.890456","DOIUrl":null,"url":null,"abstract":"The diffraction problem is considered for the plane electromagnetic wave incident on a right-angled perfectly conducting wedge, whose metallic faces are coated with thin layers of the bi-isotropic materials. Generalized second-order impedance boundary conditions for a thin covering is used. We applied the Sommerfeld-Maliuzhinets (1958) integral to the spectral representation of the total electromagnetic field. The total field must satisfy the Helmholtz equation, the edge condition and the proper conditions at infinity.","PeriodicalId":344401,"journal":{"name":"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Plane wave diffraction by the right-angled wedge coated with the thin bi-isotropic layers\",\"authors\":\"S.G. Vashtalov, O. Dotsenko\",\"doi\":\"10.1109/MMET.2000.890456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diffraction problem is considered for the plane electromagnetic wave incident on a right-angled perfectly conducting wedge, whose metallic faces are coated with thin layers of the bi-isotropic materials. Generalized second-order impedance boundary conditions for a thin covering is used. We applied the Sommerfeld-Maliuzhinets (1958) integral to the spectral representation of the total electromagnetic field. The total field must satisfy the Helmholtz equation, the edge condition and the proper conditions at infinity.\",\"PeriodicalId\":344401,\"journal\":{\"name\":\"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMET.2000.890456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.2000.890456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

考虑了平面电磁波入射到直角完全导电楔形板上的衍射问题,楔形板的金属表面涂有薄层双各向同性材料。采用了薄覆盖层的广义二阶阻抗边界条件。我们将Sommerfeld-Maliuzhinets(1958)积分应用于总电磁场的谱表示。总场必须满足亥姆霍兹方程、边缘条件和无穷远处的固有条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plane wave diffraction by the right-angled wedge coated with the thin bi-isotropic layers
The diffraction problem is considered for the plane electromagnetic wave incident on a right-angled perfectly conducting wedge, whose metallic faces are coated with thin layers of the bi-isotropic materials. Generalized second-order impedance boundary conditions for a thin covering is used. We applied the Sommerfeld-Maliuzhinets (1958) integral to the spectral representation of the total electromagnetic field. The total field must satisfy the Helmholtz equation, the edge condition and the proper conditions at infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信