文本分类中基于隐藏主题的高效特征选择

Zhiwei Zhang, X. Phan, S. Horiguchi
{"title":"文本分类中基于隐藏主题的高效特征选择","authors":"Zhiwei Zhang, X. Phan, S. Horiguchi","doi":"10.1109/WAINA.2008.137","DOIUrl":null,"url":null,"abstract":"Text categorization is an important research area in information retrieval. In order to save the storage space and get better accuracy, efficient and effective feature selection methods for reducing the data before analysis are highly desired. Usually, researches on feature selection use only a proper measurement such as information gain. In this paper, we propose a new feature selection method by adopting an attractive hidden topic analysis and entropy-based feature ranking. Experiments dealing with the well-known Reuters-21578 and Ohsumed datasets show that our method can achieve a better classification accuracy while reducing the feature dimension dramatically.","PeriodicalId":170418,"journal":{"name":"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"An Efficient Feature Selection Using Hidden Topic in Text Categorization\",\"authors\":\"Zhiwei Zhang, X. Phan, S. Horiguchi\",\"doi\":\"10.1109/WAINA.2008.137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text categorization is an important research area in information retrieval. In order to save the storage space and get better accuracy, efficient and effective feature selection methods for reducing the data before analysis are highly desired. Usually, researches on feature selection use only a proper measurement such as information gain. In this paper, we propose a new feature selection method by adopting an attractive hidden topic analysis and entropy-based feature ranking. Experiments dealing with the well-known Reuters-21578 and Ohsumed datasets show that our method can achieve a better classification accuracy while reducing the feature dimension dramatically.\",\"PeriodicalId\":170418,\"journal\":{\"name\":\"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WAINA.2008.137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2008.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

文本分类是信息检索领域的一个重要研究领域。为了节省存储空间并获得更好的准确率,需要在分析前对数据进行高效、有效的特征选择。通常,特征选择的研究只使用适当的度量,如信息增益。本文提出了一种新的特征选择方法,采用吸引力隐藏主题分析和基于熵的特征排序。对著名的Reuters-21578和Ohsumed数据集进行的实验表明,我们的方法在显著降低特征维数的同时,获得了更好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Feature Selection Using Hidden Topic in Text Categorization
Text categorization is an important research area in information retrieval. In order to save the storage space and get better accuracy, efficient and effective feature selection methods for reducing the data before analysis are highly desired. Usually, researches on feature selection use only a proper measurement such as information gain. In this paper, we propose a new feature selection method by adopting an attractive hidden topic analysis and entropy-based feature ranking. Experiments dealing with the well-known Reuters-21578 and Ohsumed datasets show that our method can achieve a better classification accuracy while reducing the feature dimension dramatically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信