基于知识的基因符号消歧

He Tan
{"title":"基于知识的基因符号消歧","authors":"He Tan","doi":"10.1145/1458449.1458466","DOIUrl":null,"url":null,"abstract":"Since there is no standard naming convention for genes and gene products, gene symbol disambiguation (GSD) has become a big challenge when mining biomedical literature. Several GSD methods have been proposed based on MEDLINE references to genes. However, nowadays gene databases, e.g. Entrez Gene, provide plenty of information about genes, and many biomedical ontologies, e.g. UMLS Metathesaurus and Semantic Network, have been developed. These knowledge sources could be used for disambiguation, in this paper we propose a method which relies on information about gene candidates from gene databases, contexts of gene symbols and biomedical ontologies. We implement our method, and evaluate the performance of the implementation using BioCreAtIvE II data sets.","PeriodicalId":143937,"journal":{"name":"Data and Text Mining in Bioinformatics","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Knowledge-based gene symbol disambiguation\",\"authors\":\"He Tan\",\"doi\":\"10.1145/1458449.1458466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since there is no standard naming convention for genes and gene products, gene symbol disambiguation (GSD) has become a big challenge when mining biomedical literature. Several GSD methods have been proposed based on MEDLINE references to genes. However, nowadays gene databases, e.g. Entrez Gene, provide plenty of information about genes, and many biomedical ontologies, e.g. UMLS Metathesaurus and Semantic Network, have been developed. These knowledge sources could be used for disambiguation, in this paper we propose a method which relies on information about gene candidates from gene databases, contexts of gene symbols and biomedical ontologies. We implement our method, and evaluate the performance of the implementation using BioCreAtIvE II data sets.\",\"PeriodicalId\":143937,\"journal\":{\"name\":\"Data and Text Mining in Bioinformatics\",\"volume\":\"208 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data and Text Mining in Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1458449.1458466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data and Text Mining in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1458449.1458466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

由于基因和基因产物没有统一的命名规范,基因符号消歧(GSD)成为生物医学文献挖掘的一大难题。已经提出了几种基于MEDLINE基因参考的GSD方法。目前,基因数据库如Entrez gene提供了大量的基因信息,生物医学本体如UMLS meta - thesaurus和Semantic Network也得到了发展。本文提出了一种基于基因数据库、基因符号上下文和生物医学本体的候选基因信息消歧方法。我们实现了我们的方法,并使用BioCreAtIvE II数据集评估了实现的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge-based gene symbol disambiguation
Since there is no standard naming convention for genes and gene products, gene symbol disambiguation (GSD) has become a big challenge when mining biomedical literature. Several GSD methods have been proposed based on MEDLINE references to genes. However, nowadays gene databases, e.g. Entrez Gene, provide plenty of information about genes, and many biomedical ontologies, e.g. UMLS Metathesaurus and Semantic Network, have been developed. These knowledge sources could be used for disambiguation, in this paper we propose a method which relies on information about gene candidates from gene databases, contexts of gene symbols and biomedical ontologies. We implement our method, and evaluate the performance of the implementation using BioCreAtIvE II data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信