{"title":"蒙特卡罗贝叶斯压缩感知中的采样大小","authors":"I. Kyriakides, R. Pribic","doi":"10.1109/SAM.2014.6882426","DOIUrl":null,"url":null,"abstract":"Bayesian compressive sensing using Monte Carlo methods is able to handle non-linear, non-Gaussian signal models. The computational expense associated with Monte Carlo methods is, however, a concern especially in scenarios requiring real-time processing. In this work, a theoretical model is derived that provides insight on the relationship between performance and computational expense for a Monte Carlo Bayesian compressive sensing algorithm. The theoretical model is shown to accurately describe the practical performance of the algorithm. Additionally, the theoretical model is able to inexpensively project the algorithm's performance characteristics for various SNRs and computational complexity levels. The model is then useful in assessing the method's performance under different operational requirements.","PeriodicalId":141678,"journal":{"name":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sampling size in Monte Carlo Bayesian compressive sensing\",\"authors\":\"I. Kyriakides, R. Pribic\",\"doi\":\"10.1109/SAM.2014.6882426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian compressive sensing using Monte Carlo methods is able to handle non-linear, non-Gaussian signal models. The computational expense associated with Monte Carlo methods is, however, a concern especially in scenarios requiring real-time processing. In this work, a theoretical model is derived that provides insight on the relationship between performance and computational expense for a Monte Carlo Bayesian compressive sensing algorithm. The theoretical model is shown to accurately describe the practical performance of the algorithm. Additionally, the theoretical model is able to inexpensively project the algorithm's performance characteristics for various SNRs and computational complexity levels. The model is then useful in assessing the method's performance under different operational requirements.\",\"PeriodicalId\":141678,\"journal\":{\"name\":\"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2014.6882426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2014.6882426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sampling size in Monte Carlo Bayesian compressive sensing
Bayesian compressive sensing using Monte Carlo methods is able to handle non-linear, non-Gaussian signal models. The computational expense associated with Monte Carlo methods is, however, a concern especially in scenarios requiring real-time processing. In this work, a theoretical model is derived that provides insight on the relationship between performance and computational expense for a Monte Carlo Bayesian compressive sensing algorithm. The theoretical model is shown to accurately describe the practical performance of the algorithm. Additionally, the theoretical model is able to inexpensively project the algorithm's performance characteristics for various SNRs and computational complexity levels. The model is then useful in assessing the method's performance under different operational requirements.