蒙特卡罗贝叶斯压缩感知中的采样大小

I. Kyriakides, R. Pribic
{"title":"蒙特卡罗贝叶斯压缩感知中的采样大小","authors":"I. Kyriakides, R. Pribic","doi":"10.1109/SAM.2014.6882426","DOIUrl":null,"url":null,"abstract":"Bayesian compressive sensing using Monte Carlo methods is able to handle non-linear, non-Gaussian signal models. The computational expense associated with Monte Carlo methods is, however, a concern especially in scenarios requiring real-time processing. In this work, a theoretical model is derived that provides insight on the relationship between performance and computational expense for a Monte Carlo Bayesian compressive sensing algorithm. The theoretical model is shown to accurately describe the practical performance of the algorithm. Additionally, the theoretical model is able to inexpensively project the algorithm's performance characteristics for various SNRs and computational complexity levels. The model is then useful in assessing the method's performance under different operational requirements.","PeriodicalId":141678,"journal":{"name":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sampling size in Monte Carlo Bayesian compressive sensing\",\"authors\":\"I. Kyriakides, R. Pribic\",\"doi\":\"10.1109/SAM.2014.6882426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian compressive sensing using Monte Carlo methods is able to handle non-linear, non-Gaussian signal models. The computational expense associated with Monte Carlo methods is, however, a concern especially in scenarios requiring real-time processing. In this work, a theoretical model is derived that provides insight on the relationship between performance and computational expense for a Monte Carlo Bayesian compressive sensing algorithm. The theoretical model is shown to accurately describe the practical performance of the algorithm. Additionally, the theoretical model is able to inexpensively project the algorithm's performance characteristics for various SNRs and computational complexity levels. The model is then useful in assessing the method's performance under different operational requirements.\",\"PeriodicalId\":141678,\"journal\":{\"name\":\"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2014.6882426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2014.6882426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用蒙特卡罗方法的贝叶斯压缩感知能够处理非线性,非高斯信号模型。然而,与蒙特卡罗方法相关的计算费用是一个值得关注的问题,特别是在需要实时处理的场景中。在这项工作中,导出了一个理论模型,该模型提供了对蒙特卡罗贝叶斯压缩感知算法的性能和计算费用之间关系的见解。理论模型能够准确地描述该算法的实际性能。此外,理论模型能够低成本地预测算法在各种信噪比和计算复杂度水平下的性能特征。该模型可用于评估该方法在不同操作需求下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sampling size in Monte Carlo Bayesian compressive sensing
Bayesian compressive sensing using Monte Carlo methods is able to handle non-linear, non-Gaussian signal models. The computational expense associated with Monte Carlo methods is, however, a concern especially in scenarios requiring real-time processing. In this work, a theoretical model is derived that provides insight on the relationship between performance and computational expense for a Monte Carlo Bayesian compressive sensing algorithm. The theoretical model is shown to accurately describe the practical performance of the algorithm. Additionally, the theoretical model is able to inexpensively project the algorithm's performance characteristics for various SNRs and computational complexity levels. The model is then useful in assessing the method's performance under different operational requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信